PTEN, a tumor suppressor, is found loss of function in many cancers, including colorectal cancer. To identify the synthetic lethal compounds working with PTEN deficiency, we performed a synthetic lethality drug screening with PTEN-isogenic colorectal cancer cells. From the screening, we found that colorectal cancer cells were sensitive to anacardic acid, a p300/CBP histone acetyltransferase (HAT) inhibitor. Anacardic acid significantly reduced the viability of cells not in cells via inducing apoptosis. Inhibition of HAT activity of p300/CBP by anacardic acid reduced the acetylation of histones at the promoter region and inhibited the transcription of Hsp70 family of proteins. The down-regulation of Hsp70 family proteins led to the reduction of AKT-Hsp70 complex formation, AKT destabilization and decreased the level of phosphorylated AKT at Ser473, all of which are vital for the survival of colorectal cells. The synthetic lethality effect of anacardic acid was further validated in tumor xenograft mice models, where colorectal tumors showed greater sensitivity to anacardic acid treatment than tumors. These data suggest that anacardic acid induced synthetic lethality by inhibiting HAT activity of p300/CBP, thereby reducing Hsp70 transcription and destabilizing AKT in PTEN deficient colorectal cancer cells.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7211175 | PMC |
http://dx.doi.org/10.7150/ijbs.42197 | DOI Listing |
Cell Biochem Biophys
December 2024
Biology Department, Université de Moncton, Moncton, NB, Canada.
Targeting more than one in nine men before age 70, prostate cancer is the most common type of cancer in men. The increased levels of cyclins, leading to activation of cyclin-dependent kinases (CDKs), play a critical role in the increased proliferation of prostate cancer cells. In this study, the regulation of the cyclin D1 (CCND1) promoter activity by activator protein-1 (AP-1) and SRY-related HMG-box (SOX) transcription factors has been characterized in PC3 prostate cancer cells.
View Article and Find Full Text PDFACS Omega
December 2024
Popular University of Chontalpa, Cardenas-Huimanguillo Highway Km. 2.0, Cardenas 86500, Mexico.
Natural nutshell extract was obtained by mechanical compression. The extract was combined with ethanol and a nonionic surfactant, and it was labeled as EES. The EES inhibitor effect on S135 carbon steel, exposed to a simulated marine-coastal environment (SME), was deduced by mass loss measurement, adsorption isotherm, electrochemical measurements, and surface analysis.
View Article and Find Full Text PDFBiol Pharm Bull
December 2024
Faculty of Pharmaceutical Sciences, Tokushima Bunri University.
Anacardic acid (AA) was first detected in the shells of cashew nuts, Anacardium occidentale, and is known to possess inhibitory activity against acetyltransferases. Recently, several anacardic acid derivatives (AAds) were isolated from the wild fungus, Tyromyces fissilis, which has been reported as xanthine oxidase inhibitors. In the present study, we investigated whether nine AAds function as acetyltransferase inhibitors.
View Article and Find Full Text PDFJ Anim Sci
November 2024
North Florida Research and Education Center, University of Florida, Marianna, FL, 32446, USA.
Animals (Basel)
October 2024
North Florida Research and Education Center, University of Florida, Marianna, FL 32446, USA.
The beef industry contributes to greenhouse gas emissions through enteric methane emissions, exacerbating climate change. Anacardic acid in cashew nutshell extract (CNSE), saponins and tannins (ST) are plant secondary metabolites that show promise in methane mitigation via antimicrobial effects, potentially exerting changes in ruminal fermentation patterns. This study examined the impact of CNSE, ST, and their combination on methane emissions, digestibility, intake, and performance of sixteen Angus crossbred steers (347 ± 30 kg) receiving a backgrounding diet (70:30 corn silage: cottonseed burrs).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!