Eukaryotic cells equip robust systems to respond to stress conditions. In stressed mammalian cells, angiogenin endoribonuclease cleaves anticodon-loops of tRNAs to generate tRNA halves termed tRNA-derived stress-induced RNAs (tiRNAs), which promote stress granule formation and regulate translation. The 5'-tiRNAs (5'-tRNA halves) contain a 2',3'-cyclic phosphate (cP) and thus belong to cP-containing RNAs (cP-RNAs). The cP-RNAs form a hidden layer of the transcriptome because standard RNA-seq cannot amplify and sequence them. In this study, we performed genome-wide analyses of short cP-RNA transcriptome in oxidative stress-exposed human cells. Using cP-RNA-seq that can specifically sequence cP-RNAs, we identified tiRNAs and numerous other cP-RNAs that are mainly derived from rRNAs and mRNAs. Although tiRNAs were produced from a wide variety of tRNA species, abundant species of tiRNAs were derived from a focal-specific subset of tRNAs. Regarding rRNA- and mRNA-derived cP-RNAs, determination of the processing sites of substrate RNAs revealed highly specific RNA cleavage events between pyrimidines and adenosine in generation of those cP-RNAs. Those cP-RNAs were derived from specific loci of substrate RNAs rather than from the overall region, implying that cP-RNAs are produced by regulated biogenesis pathways and not by random degradation events. We experimentally confirmed the identified sequences to be expressed as cP-RNAs in the cells, and their expressions were upregulated upon induction of oxidative stress. These analyses of the cP-RNA transcriptome unravel an abundant class of short ncRNAs that accumulate in cells under oxidative stress.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7549721 | PMC |
http://dx.doi.org/10.1080/15476286.2020.1766861 | DOI Listing |
Acta Neurol Belg
January 2025
Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, 124001, Haryana, India.
Insulin resistance is a condition characterized by the attenuated biological response in the presence of normal or elevated insulin level and therefore is characterized by the impaired sensitivity to insulin and impaired glucose disposal and utilization. Insulin resistance in brain/Brain insulin resistance (BIR) is accompanied by the various manifestations including alteration in glucose sensing by hypothalamic neurons, impaired sympathetic outflow in response to hypoglycemia, increased ROS production, impaired mitochondrial oxygen consumption in the brain, cognitive deficits and neuronal cell damage. It has been reported that the disrupted insulin signaling is accompanied by the reduced expression of insulin receptor (IR)/insulin receptor substrate 1 (IRS1)/PI3K/AKT and IGF-1 receptor (IGF-1R)/IRS2/PI3K pathways.
View Article and Find Full Text PDFCommun Biol
January 2025
Georgia Cancer Center, Augusta University, Augusta, GA, 30912, USA.
The transsulfuration (TSS) pathway is an alternative source of cysteine for glutathione synthesis. Little of the TSS pathway in antioxidant capacity in sickle cell disease (SCD) is known. Here, we evaluate the effects of TSS pathway activation through cystathionine beta-synthase (CBS) to attenuate reactive oxygen species (ROS) and ferroptosis stresses in SCD.
View Article and Find Full Text PDFInflamm Res
January 2025
Department of Urology, The First Affiliated Hospital of Guangxi Medical University, Guangxi Zhuang Autonomous Region, Nanning, Guangxi, China.
Background: Mitochondrial dysfunction and damage can result in the release of mitochondrial DNA (mtDNA) into the cytoplasm, which subsequently activates the cGAS-STING pathway, promoting the onset of inflammatory diseases. Various factors, such as oxidative stress, viral infection, and drug toxicity, have been identified as inducers of mitochondrial damage. This study aims to investigate the role of mtDNA as a critical inflammatory mediator in the pathogenesis of ketamine (KET)-induced cystitis (KC) through the cGAS-STING pathway.
View Article and Find Full Text PDFSci Rep
January 2025
Medical Biochemistry Department, National Research Centre, Giza, 12622, Egypt.
Being the second leading cause of death globally, cancer has been a long-standing and rapidly evolving focus of biomedical research and practice in the world. Recently, there has been growing interest in cyanobacteria. This focus is particularly evident in developing innovative anticancer treatments to reduce reliance on traditional chemotherapy.
View Article and Find Full Text PDFNat Commun
January 2025
Lab of Low-Dimensional Materials Chemistry, Key Laboratory for Ultrafine Materials of Ministry of Education, Frontier Science Center of the Materials Biology and Dynamic Chemistry, Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, China.
Reactive oxygen species (ROS) is promising in cancer therapy by accelerating tumor cell death, whose therapeutic efficacy, however, is greatly limited by the hypoxia in the tumor microenvironment (TME) and the antioxidant defense. Amplification of oxidative stress has been successfully employed for tumor therapy, but the interactions between cancer cells and the other factors of TME usually lead to inadequate tumor treatments. To tackle this issue, we develop a pH/redox dual-responsive nanomedicine based on the remodeling of cancer-associated fibroblasts (CAFs) for multi-pronged amplification of ROS (ZnPP@FQOS).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!