A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Tensile Properties of Composite Reinforced with Three-Dimensional Printed Fibers. | LitMetric

Tensile Properties of Composite Reinforced with Three-Dimensional Printed Fibers.

Polymers (Basel)

Department of Engineering, School of Engineering and Mathematical Sciences (SEMS), La Trobe University, Bundoora 3086, Australia.

Published: May 2020

This study used melt-electrospinning writing to fabricate three-dimensional fiber constructs by embedding them in a polyvinyl alcohol (PVA) matrix to obtain thin composite films. Fourier transform infrared spectroscopy (FTIR) and dynamic scanning calorimetry (DSC) were used to demonstrate an interaction between the polycaprolactone (PCL) fibrous phase and the PVA matrix phase. Following this, the mechanical deformation behavior of the composite was investigated, and the effect of reinforcement with three-dimensional fibrous constructs was illustrated. The specific strength of the composite was found to be five times higher than the specific strength of the neat PVA matrix. Additionally, the specific toughness of the composite was determined to be roughly four times higher than the specific toughness determined for the neat PVA matrix. These results demonstrate the potential of using melt-electrospinning writing for producing three-dimensional fibrous constructs for composite reinforcement purposes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7285208PMC
http://dx.doi.org/10.3390/polym12051089DOI Listing

Publication Analysis

Top Keywords

pva matrix
16
melt-electrospinning writing
8
three-dimensional fibrous
8
fibrous constructs
8
specific strength
8
times higher
8
higher specific
8
neat pva
8
specific toughness
8
composite
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!