Aerosol therapy is a key modality for drug delivery to the lungs of respiratory disease patients. Aerosol therapy improves therapeutic effects by directly targeting diseased lung regions for rapid onset of action, requiring smaller doses than oral or intravenous delivery and minimizing systemic side effects. In order to optimize treatment of critically ill patients, the efficacy of aerosol therapy depends on lung morphology, breathing patterns, aerosol droplet characteristics, disease, mechanical ventilation, pharmacokinetics, and the pharmacodynamics of cell-drug interactions. While aerosol characteristics are influenced by drug formulations and device mechanisms, most other factors are reliant on individual patient variables. This has led to increased efforts towards more personalized therapeutic approaches to optimize pulmonary drug delivery and improve selection of effective drug types for individual patients. Vibrating mesh nebulizers (VMN) are the dominant device in clinical trials involving mechanical ventilation and emerging drugs. In this review, we consider the use of VMN during mechanical ventilation in intensive care units. We aim to link VMN fundamentals to applications in mechanically ventilated patients and look to the future use of VMN in emerging personalized therapeutic drugs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7354528PMC
http://dx.doi.org/10.3390/jpm10020037DOI Listing

Publication Analysis

Top Keywords

aerosol therapy
12
mechanical ventilation
12
drug delivery
8
personalized therapeutic
8
aerosol
5
future trends
4
trends nebulized
4
nebulized therapies
4
therapies pulmonary
4
pulmonary disease
4

Similar Publications

The increasing shift from cannabis smoking to cannabis vaping is largely driven by the perception that vaping to form an aerosol represents a safer alternative to smoking and is a form of consumption appealing to youth. Herein, we compared the chemical composition and receptor-mediated activity of cannabis smoke extract (CaSE) to cannabis vaping extract (CaVE) along with the biological response in human bronchial epithelial cells. Chemical analysis using HPLC and GC/MS revealed that cannabis vaping aerosol contained fewer toxicants than smoke; CaSE and CaVE contained teratogens, carcinogens, and respiratory toxicants.

View Article and Find Full Text PDF

Background: During the COVID-19 pandemic, managing respiratory failure in critically ill patients has presented significant challenges. A high-flow nasal cannula (HFNC) has been established as an effective respiratory support modality, offering heated, humidified oxygen at high flow rates. However, concerns persist regarding the potential for aerosol dispersion and the risk of viral transmission, particularly in COVID-19.

View Article and Find Full Text PDF

The administration of surfactant aerosol therapy to preterm infants receiving continuous positive airway pressure (CPAP) respiratory support is highly challenging due to small flow passages, relatively high ventilation flow rates, rapid breathing and small inhalation volumes. To overcome these challenges, the objective of this study was to implement a validated computational fluid dynamics (CFD) model and develop an overlay nasal prong interface design for use with CPAP respiratory support that enables high efficiency powder aerosol delivery to the lungs of preterm infants when needed (i.e.

View Article and Find Full Text PDF

A major challenge in tuberculosis (TB) therapeutics is that antibiotic exposure leads to changes in the physiology of (), which may enable the pathogen to withstand treatment. While antibiotic-treated has been evaluated in experiments it is unclear if and how long-term treatment with diverse antibiotics with varying treatment-shortening activity (sterilizing activity) affects physiologic processes differently. Here, we used SEARCH-TB, a pathogen-targeted RNA-sequencing platform, to characterize the transcriptome in the BALB/c high-dose aerosol infection mouse model following 4 weeks of treatment with three sterilizing and three non-sterilizing antibiotics.

View Article and Find Full Text PDF

Selected microwave irradiation effectively inactivates airborne avian influenza A(H5N1) virus.

Sci Rep

January 2025

The Edgar L. and Harold H. Buttner Chair of Electrical Engineering and Computer Sciences, University of California, Berkeley, CA, USA.

The highly pathogenic avian influenza A(H5N1) virus threatens animal and human health globally. Innovative strategies are crucial for mitigating risks associated with airborne transmission and preventing outbreaks. In this study, we sought to investigate the efficacy of microwave inactivation against aerosolized A(H5N1) virus by identifying the optimal frequency band for a 10-min exposure and evaluating the impact of varying exposure times on virus inactivation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!