Endophytes Increased Fruit Quality with Higher Soluble Sugar Production in Honeycrisp Apple ().

Microorganisms

School of Environmental and Forest Sciences, College of the Environment, University of Washington, Seattle, WA 98195-2100, USA.

Published: May 2020

Endophytes are fungi, bacteria, or yeast symbionts that live in the intercellular spaces or vascular tissues of host plants. Investigations indicate that endophytes isolated from the Salicaceae family ( and ) hosts provide several benefits that promote plant growth, including but not limited to di-nitrogen fixation, plant hormone production, nutrient acquisition, stress tolerance, and defense against phytopathogens. In exchange, the microorganisms receive domicile and photosynthates. Considering the known characteristics of nitrogen fixation and plant hormone production, we hypothesized that apple trees grown under nitrogen-limited conditions would show improved biometrics with endophyte inoculation. Our research objectives were to investigate the endophyte effects on plant physiology and fruiting. We examined these effects through ecophysiology metrics involving rates of photosynthesis, stomatal conductance and density, transpiration, biomass accretion, chlorophyll content and fluorescence, and fruit soluble sugar content and biomass. Our results showed evidence of the endophytes' colonization in apple trees, decreased stomatal density, delayed leaf senescence, and increased lateral root biomass with endophytes. A highlight of the findings was a significant increase in both fruit soluble sugar content and biomass. Future research into the mechanistic underpinnings of this phenomenon stands to offer novel insights on how microbiota may alter carbohydrate metabolism under nitrogen-deficient conditions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7284893PMC
http://dx.doi.org/10.3390/microorganisms8050699DOI Listing

Publication Analysis

Top Keywords

soluble sugar
12
fixation plant
8
plant hormone
8
hormone production
8
apple trees
8
fruit soluble
8
sugar content
8
content biomass
8
endophytes
4
endophytes increased
4

Similar Publications

Arachis hypogaea monoacylglycerol lipase AhMAGL3b participates in lipid metabolism.

BMC Plant Biol

December 2024

College of Advanced Agricultural Sciences, Zhejiang A & F University, Hangzhou, 311300, China.

Background: Monoacylglycerol lipase (MAGL) belongs to the serine hydrolase family; it catalyzes MAG to produce glycerol and free fatty acids (FFAs), which is the final step in triacylglycerol (TAG) hydrolysis. The effects of MAGL on comprehensive lipid metabolism and plant growth and development have not been elucidated, especially in Arachis hypogaea, an important oil crop.

Results: Herein, AhMAGL3b encoding a protein with both hydrolase and acyltransferase regions, a member of MAGL gene family, was cloned and overexpressed in Arabidopsis thaliana.

View Article and Find Full Text PDF

Light-emitting diode (LED) lamps are efficient elicitors of secondary metabolites. To investigate the influence of LED light on steviol glycosides (SGs) and phenolic compounds biosynthesis, stevia shoots were cultured under the following LED lights: white-WL, blue-B, red-R, 70% red and 30% blue-RB, 50% UV, 35% red and 15% blue-RBUV, 50% green, 35% red and 15% blue-RBG, 50% yellow, 35% red and 15% blue-RBY, 50% far-red, 35% red and 15% blue-RBFR and white fluorescent light (WFl, control). RBG light stimulated shoots' biomass production.

View Article and Find Full Text PDF

Salinity stress adversely affects wheat growth and productivity, necessitating effective mitigation strategies. This study investigates the combined impact of ascorbic acid (AsA), silver nanoparticles (NPs), and Salvadora oleoides aqueous leaf extract (LE) on wheat tolerance to salinity stress. A randomized complete design (RCD) was employed with fourteen treatments: T1 (5 mM AsA), T2 (10 mM AsA), T3 (20 ppm AgNPs), T4 (40 ppm AgNPs), T5 (5% S.

View Article and Find Full Text PDF

Improvement of silage characteristics of HMC4 and improvement of silage quality of king grass.

Front Microbiol

December 2024

Zhanjiang Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, China.

The effect of HMC4 produced by protoplast fusion on silage was studied. The silage formula was composed of heterozygote HMC4 (Group C), parent Lactobacillus (Group A) and a combination of two parents (Group B). The fermentation quality and microbial composition of each batch of silage were evaluated.

View Article and Find Full Text PDF

Modulating the fatty acid composition of black soldier fly larvae via substrate fermentation.

Animal

November 2024

CLMT Research Group for Insect Production and Processing, Department of Microbial and Molecular Systems (M(2)S), KU Leuven, Geel Campus, Kleinhoefstraat 4, 2440 Geel, Belgium. Electronic address:

Black soldier fly larvae (BSFL, Hermetia illucens) contain high amounts of proteins and essential amino acids and are therefore an appropriate feed source. However, they lack essential fatty acids (FAs), specifically ω-3 and ω-6, making them a less desirable feed choice for aquaculture. The aim of this study was to increase the ω-3 and ω-6 FA concentrations in BSFL by manipulating the FA composition in their rearing substrate.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!