Evaluation of Functional Abilities in 0-6 Year Olds: an Analysis with the eEarlyCare Computer Application.

Int J Environ Res Public Health

Departamento de Ingeniería Informática, Escuela Politécnica Superior, Universidad de Burgos, Research Group ADMIRABLE, Escuela Politécnica Superior, Avd. de Cantabria s/n, 09006 Burgos, Spain.

Published: May 2020

The application of Industry 4.0 to the field of Health Sciences facilitates precise diagnosis and therapy determination. In particular, its effectiveness has been proven in the development of personalized therapeutic intervention programs. The objectives of this study were (1) to develop a computer application that allows the recording of the observational assessment of users aged 0-6 years old with impairment in functional areas and (2) to assess the effectiveness of computer application. We worked with a sample of 22 users with different degrees of cognitive disability at ages 0-6. The eEarlyCare computer application was developed with the aim of allowing the recording of the results of an evaluation of functional abilities and the interpretation of the results by a comparison with "normal development". In addition, the Machine Learning techniques of supervised and unsupervised learning were applied. The most relevant functional areas were predicted. Furthermore, three clusters of functional development were found. These did not always correspond to the disability degree. These data were visualized with distance map techniques. The use of computer applications together with Machine Learning techniques was shown to facilitate accurate diagnosis and therapeutic intervention. Future studies will address research in other user cohorts and expand the functionality of their application to personalized therapeutic programs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7246437PMC
http://dx.doi.org/10.3390/ijerph17093315DOI Listing

Publication Analysis

Top Keywords

computer application
16
evaluation functional
8
functional abilities
8
eearlycare computer
8
personalized therapeutic
8
therapeutic intervention
8
functional areas
8
machine learning
8
learning techniques
8
application
6

Similar Publications

The study suggests a better multi-objective optimization method called 2-Archive Multi-Objective Cuckoo Search (MOCS2arc). It is then used to improve eight classical truss structures and six ZDT test functions. The optimization aims to minimize both mass and compliance simultaneously.

View Article and Find Full Text PDF

EMG feedback improves force control of a myoelectric hand prosthesis by conveying the magnitude of the myoelectric signal back to the users via tactile stimulation. The present study aimed to test if this method can be used by a participant with a high-level amputation, and whose muscle used for prosthesis control (pectoralis major) was not intuitively related to hand function. Vibrotactile feedback was delivered to the participant's torso, while the control was tested using EMG from three different muscles.

View Article and Find Full Text PDF

Design of integrated radar and communication system based on solvable chaotic signal.

Sci Rep

December 2024

Shaanxi Key Laboratory of Complex System Control and Intelligent Informantion Processing, Xi'an University of Technology, Xi'an 710048, China.

In the integrated radar and communication system (IRCS), the design of signal that can simultaneously satisfy the radar detection and communication transmission is very important and difficult. Recently, some new properties of a class of solvable chaotic system have been studied for wireless applications, such as low bit error rate (BER) wireless communications and low cost target detection. In this paper, a novel IRCS based on the chaotic signal is proposed, and the performance of proposed scheme is analyzed.

View Article and Find Full Text PDF

A highly effective method for creating a supramolecular metallogel of Ni(II) ions (NiA-TA) has been developed in our work. This approach uses benzene-1,3,5-tricarboxylic acid as a low molecular weight gelator (LMWG) in DMF solvent. Rheological studies assessed the mechanical properties of the Ni(II)-metallogel, revealing its angular frequency response and thixotropic behaviour.

View Article and Find Full Text PDF

Accurate classification of logos is a challenging task in image recognition due to variations in logo size, orientation, and background complexity. Deep learning models, such as VGG16, have demonstrated promising results in handling such tasks. However, their performance is highly dependent on optimal hyperparameter settings, whose fine-tuning is both labor-intensive and time-consuming.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!