(1) Background: doxorubicin is a potent chemotherapeutic agent, but it has limitations regarding its side effects and therapy resistance. Hydrogels potentially deal with these problems, but several characterizations need to be optimized to better understand how hydrogel assisted chemotherapy works. Poloxamer 407 (P407) hydrogels were mixed with doxorubicin and physico-chemical, biological, and pharmacological characterizations were considered. (2) Methods: hydrogels were prepared by mixing P407 in PBS at 4 °C. Doxorubicin was added upon solutions became clear. Time-to-gelation, hydrogel morphology, and micelles were studied first. The effects of P407-doxorubicin were evaluated on MC-38 colon cancer cells. Furthermore, doxorubicin release was assessed and contrasted with non-invasive in vivo whole body fluorescence imaging. (3) Results: 25% P407 had favorable gelation properties with pore sizes of 30-180 µm. P407 micelles were approximately 5 nm in size. Doxorubicin was fully released in vitro from 25% P407 hydrogel within 120 h. Furthermore, P407 micelles strongly enhanced the anti-neoplastic effects of doxorubicin on MC-38 cells. In vivo fluorescence imaging revealed that hydrogels retained fluorescence signals at the injection site for 168 h. (4) Conclusions: non-invasive imaging showed how P407 gels retained drug at the injection site. Doxorubicin P407 micelles strongly enhanced the anti-tumor effects.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7248767PMC
http://dx.doi.org/10.3390/molecules25092219DOI Listing

Publication Analysis

Top Keywords

p407 micelles
12
doxorubicin
8
p407
8
fluorescence imaging
8
25% p407
8
micelles enhanced
8
injection site
8
hydrogels
5
doxorubicin loaded
4
loaded poloxamer
4

Similar Publications

A targeted micellar formation of doxorubicin (Dox) and curcumin (Cur) was evaluated to enhance the efficacy and reduce the toxicity of these drugs in KG1a leukemic stem cells (LSCs) compared to EoL-1 leukemic cells. Dox-Cur-micelle (DCM) was developed to improve the cell uptake of both compounds in LSCs. Cur-micelle (CM) was produced to compare with DCM.

View Article and Find Full Text PDF

Mixed Micellar Gel of Poloxamer Mixture for Improved Solubilization of Poorly Water-Soluble Ibuprofen and Use as Thermosensitive In Situ Gel.

Pharmaceutics

August 2024

Thammasat University Research Unit in Smart Materials and Innovative Technology for Pharmaceutical Applications (SMIT-Pharm), Faculty of Pharmacy, Thammasat University, Pathumthani 12120, Thailand.

The aqueous solution of binary mixtures of amphiphilic copolymers is a potential platform for fabricating mixed polymeric micelles for pharmaceutical applications, particularly in developing drug delivery depots for a poorly water-soluble compound. This study fabricated and investigated binary mixtures of poloxamer 403 (P403) and poloxamer 407 (P407) at varying P403:P407 molar ratios to develop a vehicle for the poorly water-soluble compound, using ibuprofen as a model drug. The cooperative formation of mixed micelles was obtained, and the solubility of ibuprofen in the binary mixtures was enhanced compared to the solubility in pure water and an aqueous single P407 solution.

View Article and Find Full Text PDF

Poloxamer 407 (P407) is used as a safety-guaranteed, invaluable pharmaceutical nanocarrier. The aqueous solution of P407 exhibits sol-to-gel and gel-to-sol transitions, specifically during a temperature rise. Here, we develop a method to determine the pair potential between colloidal particles based primarily on experimental small-angle scattering data.

View Article and Find Full Text PDF

Poloxamer hydrogel possesses thermosensitive sol-gel transition characteristics and is widely used as a drug-controlled-release carrier for topical or injectable formulations. In this study, the effect of loading of a drug, acetaminophen (ACE), on the physical and structural properties of poloxamer 407 (P407) micelles and hydrogels was investigated. Differential scanning calorimetry measurements revealed that ACE reduced the critical micelle temperature and enthalpy of micellization of P407 solutions.

View Article and Find Full Text PDF

Poloxamer-Based Mixed Micelles Loaded with Thymol or Eugenol for Topical Applications.

ACS Omega

June 2024

Department of Environmental Protection Engineering, Faculty of Technology, Tomas Bata University in Zlin, Vavreckova 275, 760 01 Zlin, Czech Republic.

Poloxamers (P184, P188, and P407) have been investigated as the carrier system for eugenol or thymol. A synergic effect of mixed Poloxamers was proved by enhanced micellar parameters, with a lower critical micelle concentration (about 0.06 mM) and the highest surface adsorption of 9 × 10 mol m for P188/P407.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!