AI Article Synopsis

  • Researchers are developing new polymeric systems for the photo-triggered release of biopharmaceuticals, focusing on interpolyelectrolyte complexes (IPECs) made from poly-l-lysine and heparin.
  • The study optimized the ratio of poly-l-lysine to heparin to control the release of genetic materials like oligonucleotides, siRNA, and pDNA.
  • A photosensitive linker was created and its properties were examined, while the modified IPECs were tested for their ability to deliver genetic material effectively inside cells using techniques like flow cytometry.

Article Abstract

Photo-triggered release of biopharmaceutical drugs inside the cells is a challenging direction of modern science, which requires obtaining new polymeric systems. The interpolyelectrolyte complexes (IPECs) of poly-l-lysine with heparin capable of encapsulation of genetic constructions-such as model oligonucleotide, siRNA, and pDNA-were obtained. Poly-l-lysine to heparin ratios were optimized to provide the appropriate release kinetics of genetic material from the polyplex. In order to impart the obtained IPEC with photosensitive properties, the linker was synthesized as based on 4-brommethyl-3-nitrobenzoic acid. The conditions and kinetics of photosensitive linker destruction were carefully studied. The colloid particles of IPEC were modified with Cy3 probe and their cellular internalization was investigated by flow cytometry method. The efficacy of photosensitive IPECs as siRNA and pDNA delivery system was evaluated.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7285230PMC
http://dx.doi.org/10.3390/polym12051077DOI Listing

Publication Analysis

Top Keywords

interpolyelectrolyte complexes
8
poly-l-lysine heparin
8
photosensitive
4
photosensitive poly-l-lysine/heparin
4
poly-l-lysine/heparin interpolyelectrolyte
4
complexes delivery
4
delivery genetic
4
genetic drugs
4
drugs photo-triggered
4
photo-triggered release
4

Similar Publications

Biguanide-based cationic polyelectrolytes are used as key components of interpolyelectrolyte complexes bolstering alginate hydrogel microcapsules employed in cell therapies. Nevertheless, electrostatic complexation of these unique polycations has not been studied before. In this study, the interaction between biguanide condensates and anionic polyelectrolytes with carboxylate groups was studied on a model system of a metformin condensate (MFC) and an anionic diblock polyelectrolyte poly(methacrylic acid)--poly(ethylene oxide) (PMAA-PEO).

View Article and Find Full Text PDF

In order to control pathogenic microorganisms, three polymer compositions were prepared and tested. First, a water-soluble positively charged polycomplex was synthesized via the electrostatic binding of anionic polyacrylic acid to an excess of polyethylenimine to enhance the biocidal activity of the polycation. Second, an aqueous solution of AgNO was added to the polycomplex, thus forming a ternary polycation-polyanion-Ag complex with an additional antimicrobial effect.

View Article and Find Full Text PDF

Recently, cellulose and other biomass nanofibers (NFs) have been increasingly utilized in the design of sustainable materials for environmental, biomedical, and other applications. However, the past literature lacks a comparison of the macromolecular and nanofibrous states of biopolymers in various materials, and the advantages and limitations of using nanofibers (NF) instead of conventional polymers are poorly understood. To address this question, hydrogels based on interpolyelectrolyte complexes (IPECs) between carboxymethyl cellulose nanofibers (CMCNFs) and chitosan (CS) were prepared by ele+ctrostatic cross-linking and compared with the hydrogels of carboxymethyl cellulose (CMC) and CS biopolymers.

View Article and Find Full Text PDF

The issue of water and wind erosion of soil remains critically important. Polymeric materials offer a promising solution to this problem. In this study, we prepared and applied an interpolyelectrolyte complex (IPEC) composed of the biopolymers chitosan and sodium carboxymethyl cellulose (Na-CMC) for the structuring of forest sandy soils and the enhancement of the pre-sowing treatment of Scots pine ( L.

View Article and Find Full Text PDF

3D printed benznidazole tablets based on an interpolyelectrolyte complex by melting solidification printing process (MESO-PP): An innovative strategy for personalized treatment of Chagas disease.

Int J Pharm

September 2024

Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Ciencias Farmacéuticas, Córdoba, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas, CONICET, Unidad de Investigación y Desarrollo en Tecnología Farmacéutica, UNITEFA, Córdoba, Argentina. Electronic address:

3D printing technology is revolutionizing pharmaceuticals, offering tailored solutions for solid dosage forms. This innovation is particularly significant for conditions like Chagas disease, which require weight-dependent treatments. In this work, a formulation of benznidazole (BNZ), the primary treatment for this infection, was developed to be utilized with the Melting Solidification Printing Process (MESO-PP) 3D printing technique.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!