In this era, worldwide interest has been directed towards using natural antioxidants to guard against drug side effects. is a famous medicinal plant with many biologically active compounds. Triamcinolone acetonide (TA) is an extensively used glucocorticoid. Hence, this study explored, for the first time, the possible beneficial effects of ethanolic extract on TA-induced oxidative damage in the lung and spleen of rats. : Five experimental groups were used: control group, -treated group (600 mg/kg/day, orally), TA-treated group (40 mg/kg/twice/week I/P), + TA co-treated group, and /TA prophylactic group. TA exposure significantly induced leukocytosis and neutrophilia. In addition, TA significantly reduced the levels of C-reactive protein, interleukin-12, tumor necrosis factor α, and immunoglobulins. Lung Caspase-3 overexpression and splenic CD8 downregulation were also noted in the TA group. TA treatment significantly increased malondialdehyde concentration but reduced superoxide dismutase and glutathione peroxidase activities. counteracted the TA oxidative and apoptotic effects. The best results were recorded in the prophylactic group. has a remarkable protective effect via its anti-inflammatory, anti-apoptotic, and antioxidant capacity. Thus, it could be a candidate as a natural antioxidant to face glucocorticoid's harmful side effects.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7278611PMC
http://dx.doi.org/10.3390/antiox9050396DOI Listing

Publication Analysis

Top Keywords

ethanolic extract
8
side effects
8
prophylactic group
8
group
7
extract attenuates
4
attenuates triamcinolone
4
triamcinolone acetonide-induced
4
acetonide-induced pulmonary
4
pulmonary splenic
4
splenic tissue
4

Similar Publications

The optimization of bioactive compound extraction from using ultrasound-assisted extraction (UAE) via sonotrode was investigated to maximize phenolic recovery and antioxidant activity while promoting a sustainable process. Optimal conditions (40% / ethanol in water, 38 min, 36% amplitude) were selected to maximize phenolic recovery while considering environmental and energy sustainability by optimizing extraction efficiency and minimizing solvent and energy usage. HPLC-ESI-QTOF-MS analysis tentatively identified 25 phenolic compounds, including sulfated phenolic acids, phlorotannins, flavonoids, and halophenols, with some reported for the first time in , underscoring the complexity of this alga's metabolome.

View Article and Find Full Text PDF

Secondary metabolism is one of the main mechanisms uses to explore and colonize new niches, and 6-pentyl-α-pyrone (6-PP) is an important secondary metabolite in this process. This work focused on standardizing a method to investigate the production of 6-PP. Ethanol and ethyl acetate were both effective solvents for quantifying 6-PP in solution and had limited solubility in potato-dextrose-broth media.

View Article and Find Full Text PDF

Background: Alcoholic liver disease (ALD) is a significant global health concern, primarily resulting from chronic alcohol consumption, with oxidative stress as a key driver. The ethyl acetate extract of (CGE) exhibits antioxidant and hepatoprotective properties, but its detailed mechanism of action against ALD remains unclear. This study investigates the effects and mechanisms of CGE in alleviating alcohol-induced oxidative stress and liver injury.

View Article and Find Full Text PDF

Background/objectives: Hyperlipidemia is a serious risk factor for cardiovascular diseases and liver steatosis. In this work, we explored the effect of an herbal formula (CBF) containing immature pods and extracts on lipid metabolism disorders and lipoprotein-rich plasma (LRP) oxidation in mice.

Methods: The phenolic composition was determined using HPLC-DAD analysis.

View Article and Find Full Text PDF

This study explored the batch membrane filtration of 40% ethanol extracts from spent lavender, containing valuable compounds like rosmarinic acid, caffeic acid, and luteolin, using a polyamide-urea thin film composite X201 membrane. Conducted at room temperature and 20 bar transmembrane pressure, the process demonstrated high efficiency, with rejection rates exceeding 98% for global antioxidant activity and 93-100% for absolute concentrations of the target components. During concentration, the permeate flux declined from 2.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!