Wheezing reveals important cues that can be useful in alerting about respiratory disorders, such as Chronic Obstructive Pulmonary Disease. Early detection of wheezing through auscultation will allow the physician to be aware of the existence of the respiratory disorder in its early stage, thus minimizing the damage the disorder can cause to the subject, especially in low-income and middle-income countries. The proposed method presents an extended version of Non-negative Matrix Partial Co-Factorization (NMPCF) that eliminates most of the acoustic interference caused by normal respiratory sounds while preserving the wheezing content needed by the physician to make a reliable diagnosis of the subject's airway status. This extension, called Informed Inter-Segment NMPCF (IIS-NMPCF), attempts to overcome the drawback of the conventional NMPCF that treats all segments of the spectrogram equally, adding greater importance for signal reconstruction of repetitive sound events to those segments where wheezing sounds have not been detected. Specifically, IIS-NMPCF is based on a bases sharing process in which inter-segment information, informed by a wheezing detection system, is incorporated into the factorization to reconstruct a more accurate modelling of normal respiratory sounds. Results demonstrate the significant improvement obtained in the wheezing sound quality by IIS-NMPCF compared to the conventional NMPCF for all the Signal-to-Noise Ratio (SNR) scenarios evaluated, specifically, an SDR, SIR and SAR improvement equals 5.8 dB, 4.9 dB and 7.5 dB evaluating a noisy scenario with SNR = -5 dB.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7249056 | PMC |
http://dx.doi.org/10.3390/s20092679 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!