The rapid increase of industrial activities leads to serious environmental pollution, especially, in aqueous systems and particularly with heavy metals. Cadmium, one of the most poisonous elements, is rapidly accumulated in the human body, therefore, the efficient removal of cadmium ions from wastewater is an urgent need. Coordination networks (CNs) and its subdivision metal-organic frameworks (MOFs), are structured porous composites which present various special properties. In this work two CNs were used as adsorbent materials for the removal of Cd(II) ions from aqueous solutions. By the reaction of CoSO·7HO and NiSO·7HO with ,-bis(phosphonomethyl)glycine (Gly) in hydrothermal conditions two CNs-Co-Gly and Ni-Gly- were synthesized, respectively. Cadmium adsorption onto the studied CNs was conducted in batch mode, and the effect of pH, initial concentration, contact time, temperature and sorbent weight on the sorption process were investigated. Parametric Method 3 (PM3)semi-empirical analyses of the CNs' structural properties were performed in order to predict the adsorption properties. For this reason, two octahedral models were calculated and computational predictions were compared with the experimental results. Both computational and experimental adsorption studies found that Ni-Gly presents higher affinity for cadmium ions. Moreover, the adsorbent materials can be readily regenerated and recycled without significant loss of cadmium uptake capacity.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7279495 | PMC |
http://dx.doi.org/10.3390/nano10050899 | DOI Listing |
Sci Rep
December 2024
Qatar Environment and Energy Research Institute (QEERI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, 34110, Qatar.
This study aims to modify raw zeolite with metal oxide nanocomposites to remove nickel (Ni) ions from synthetic wastewater. Novel zeolite-doped magnesium oxide (MgO), iron oxide (FeO), and zinc oxide (ZnO) nanocomposites were synthesized by hydrothermal-calcination methods. The novel zeolite-doped metal oxide nanocomposites were used as adsorbents to remove Ni (II) ions from synthetic wastewater.
View Article and Find Full Text PDFSci Rep
December 2024
Interdisciplinary Centre for Water Research (ICWaR), Indian Institute of Science, Bangalore, 560012, India.
This study presents the synthesis of a green polymer-based nanocomposite by incorporating green CuO nanoparticles into polyaniline (PANI) for the adsorption of Pb (II) ions from contaminated water. The nanocomposite was extensively characterized using FTIR, XRD, BET, SEM-EDX, XPS, and Raman spectroscopy, both before and after Pb(II) adsorption. Optimization studies were performed to assess the effects of key parameters, including pH, adsorbent dosage, and initial ion concentration on the adsorption process.
View Article and Find Full Text PDFEnviron Res
December 2024
School of Mechanical Science and Engineering, Northeast Petroleum University, Daqing 163318, China.
Porous carbon adsorption represents a critical component of CCUS technologies, with microporous structures playing an essential role in CO capture. The preparation of porous carbon introduces intrinsic defects, making it essential to consider both pore size and these defects for a comprehensive understanding of the CO adsorption mechanism. This study investigates the mechanisms of CO adsorption influenced by intrinsic defects and pore size using multiscale methods, incorporating experimental validation, Grand Canonical Monte Carlo simulations, and Density Functional Theory simulations.
View Article and Find Full Text PDFJ Chromatogr A
December 2024
State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China. Electronic address:
A novel magnetic mesoporous fluorinated metal-organic framework material (FeO@MIP-206-F) has been synthesized specifically for application as an adsorbent for perfluoroalkyl carboxylic acids (PFCAs) extraction by magnetic solid-phase extraction (MSPE). The carefully designed FeO@MIP-206-F material features an appropriate porosity, open metal sites of Zr, and functional groups (fluorine and amino) conducive to the adsorption process. The distinctive architecture of the material endows it with exceptional extraction capabilities for PFCAs.
View Article and Find Full Text PDFToxins (Basel)
December 2024
College of Life and Environmental Sciences, Hunan University of Arts and Science, Changde 415000, China.
Microcystin-leucine arginine (MC-LR) poses a serious threat to aquatic animals during cyanobacterial blooms. Recently, biochar (BC), derived from rice straw, has emerged as a potent adsorbent for eliminating hazardous contaminants from water. To assess the joint hepatotoxic effects of environmentally relevant concentrations of MC-LR and BC on fish, male adult zebrafish () were sub-chronically co-exposed to varying concentrations of MC-LR (0, 1, 5, and 25 μg/L) and BC (0 and 100 μg/L) in a fully factorial experiment.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!