Legumes are affected by biotic factors such as insects, molds, bacteria, and viruses. These plants can produce many different molecules in response to the attack of phytopathogens. Protease inhibitors (PIs) are proteins produced by legumes that inhibit the protease activity of phytopathogens. PIs are known to reduce nutrient availability, which diminishes pathogen growth and can lead to the death of the pathogen. PIs are classified according to the specificity of the mechanistic activity of the proteolytic enzymes, with serine and cysteine protease inhibitors being studied the most. Previous investigations have reported the efficacy of these highly stable proteins against diverse biotic factors and the concomitant protective effects in crops, representing a possible replacement of toxic agrochemicals that harm the environment.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7246880PMC
http://dx.doi.org/10.3390/ijms21093322DOI Listing

Publication Analysis

Top Keywords

protease inhibitors
12
biotic factors
12
legumes protease
4
inhibitors biopesticides
4
biopesticides defense
4
defense mechanisms
4
mechanisms biotic
4
factors legumes
4
legumes biotic
4
factors insects
4

Similar Publications

Background: Alzheimer's disease (AD) is a complex neurodegenerative disorder characterized by hallmark pathologies that affect many brain regions, including the cellular microenvironment with the hippocampus, ultimately leading to profound deficits in cognition. Surprising recent work has shown that factors in the systemic environment regulate the hippocampal cellular niche; age-associated blood-borne factors exacerbate brain aging phenotypes, whereas youth-associated blood-borne factors, including tissue inhibitor of metalloproteinases 2 (TIMP2), reverse or ameliorate features of brain aging. As aging serves as the major risk factor for AD, and recent work shows that systemic factors can regulate AD pathology, we sought to characterize mechanisms by which the systemic environment regulates CNS phenotypes relevant to AD pathology through changes in neuroinflammation.

View Article and Find Full Text PDF

Background: Murine studies have identified blood proteins that influence brain aging, but translating these findings to humans remains challenging. We used an innovative approach to investigate whether genetically predicted blood levels of proteins linked to brain aging in animal models are associated with cognitive performance in individuals at risk of Alzheimer's disease (AD) [Figure 1].

Method: Through systematic review, we identified 13 circulating proteins with an aging/rejuvenating effect on the mouse brain.

View Article and Find Full Text PDF

[Evodiamine enhances the killing effect of NK cells on small cell lung cancer by regulating BIRC5].

Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi

December 2024

Department of Oncology, Renmin Hospital of Wuhan University, Wuhan 430000, China.

Objective To investigate the effects of evodiamine (EVO) on Natural Killer (NK) cell-mediated killing in small cell lung cancer (SCLC) cells via affecting baculoviral inhibitor of apoptosis repeat containing 5 (BIRC5). Methods H446 cells and NK-92 cells were treated with EVO at different concentrations, and cell proliferation was detected using the MTT (3-(4, 5-Dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide) assay, while cell invasion was assessed using the Transwell assay. NK-92 cells and H446 cells were co-cultured at different effector-to-target ratios to detect the cytotoxicity of NK cells against H446 cells and the level of degranulation in NK-92 cells.

View Article and Find Full Text PDF

Familial encephalopathy with neuroserpin inclusion bodies (FENIB) is a neurodegenerative pathology caused by accumulation of mutant neuroserpin (NS) polymers inside the endoplasmic reticulum (ER) of neurons, leading to cellular toxicity and neuronal death. To date, there is no cure for FENIB, and only palliative care is available for FENIB patients, underlining the urgency to develop therapeutic strategies. The purpose of this work was to create a cellular system designed for testing small molecules able to reduce the formation of NS polymers.

View Article and Find Full Text PDF

Nirmatrelvir/ritonavir is a novel drug combination authorized by the US Food and Drug Administration for the treatment of coronavirus disease 2019 (COVID-19). This report describes the case of a patient with a prior history of kidney transplantation who received nirmatrelvir/ritonavir. In this case, sirolimus use was successfully stopped before nirmatrelvir/ritonavir treatment, and the nirmatrelvir/ritonavir trough concentration was determined.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!