We present the photoionization dynamics of the C buckminsterfullerene from threshold up to 14.0 eV recorded with VUV synchrotron radiation at the DESIRS beamline at the SOLEIL synchrotron. The recorded data is obtained using a double-imaging photoelectron photoion coincidence spectrometer and is presented as a two-dimensional photoelectron matrix which contains a wealth of spectroscopic data. We present these data in an astrophysical context which relates to (i) the threshold photoelectron spectrum which is compared to data relevant to the diffuse interstellar bands (DIBs), (ii) the kinetic photoelectron distribution at the Lyman-α line which is relevant to the dominant heating source in the ISM, and (iii) the absolute photoionization cross section of C up to approx. 10.5 eV. The photoelectron spectrum implies that the symmetry of the ground state is different than previous theoretical models have predicted, and this result is discussed in context of recent experimental and theoretical findings. Also presented are partial photoionization cross sections of the first two photoelectron bands and their anisotropy parameters. These data are compared with previous theoretical values and discussed where appropriate.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d0cp01210fDOI Listing

Publication Analysis

Top Keywords

photoionization dynamics
8
dynamics buckminsterfullerene
8
astrophysical context
8
photoelectron spectrum
8
photoionization cross
8
previous theoretical
8
photoelectron
7
data
5
vuv photoionization
4
buckminsterfullerene 2d-matrix
4

Similar Publications

Irradiation of condensed matter with ionizing radiation generally causes direct photoionization as well as secondary processes that often dominate the ionization dynamics. Here, large helium (He) nanodroplets with radius ≳ 40 nm doped with lithium (Li) atoms are irradiated with extreme ultraviolet (XUV) photons of energy hν ≥ 44.4 eV and indirect ionization of the Li dopants is observed in addition to direct photoionization of the He droplets.

View Article and Find Full Text PDF

Observation of the Smallest Three-Dimensional Neutral Boron Cluster.

Angew Chem Int Ed Engl

January 2025

Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States.

Despite major progress in the investigation of boron cluster anions, direct experimental study of neutral boron clusters remains a significant challenge because of the difficulty in size selection. Here we report a size-specific study of the neutral B cluster using threshold photoionization with a tunable vacuum ultraviolet free electron laser. The ionization potential of B is measured to be 8.

View Article and Find Full Text PDF

Irradiation of condensed matter with ionizing radiation generally causes direct photoionization as well as secondary processes that often dominate the ionization dynamics. Here, large helium (He) nanodroplets with radius ≳ 40 nm doped with lithium (Li) atoms are irradiated with extreme ultraviolet (XUV) photons of energy hν ≥ 44.4 eV and indirect ionization of the Li dopants is observed in addition to direct photoionization of the He droplets.

View Article and Find Full Text PDF

Non vertical ionization-dissociation model for strong IR induced dissociation dynamics of [Formula: see text].

Sci Rep

January 2025

School of Physics and Information Technology, Shaanxi Normal University, Xi'an, 710062, Shaanxi, People's Republic of China.

Electron-nuclear coupling plays a crucial role in strong laser induced molecular dissociation dynamics. The interplay between electronic and nuclear degrees of freedom determines the pathways and outcomes of molecular fragmentation. However, a full quantum mechanical treatment of electron-nuclear dynamics is computationally intensive.

View Article and Find Full Text PDF

Stereochemistry plays a key role in both fundamental chemical processes and the dynamics of a large set of molecular systems of importance in chemistry, medicine and biology. Predicting the chemical transformations of organic precursors in such environments requires detailed kinetic models based on laboratory data. Reactive intermediates play a critical role in constraining the models but their identification and especially their quantification remain challenging.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!