Objective: To investigate if modern seismocardiography (SCG) and ballistocardiography (BCG) are useful in the detection of hemodynamic changes occurring during simulated obstructive apneic events.

Methods: Forty-seven healthy volunteers performed a voluntary maximum Mueller maneuver (MM) for 10 s, and SCG and BCG signals were simultaneously taken. The kinetic energy of a set of cardiac cycles before and during the apneic episode was automatically computed from the rotational and linear channels of the SCG and BCG waveforms and its temporal integral (i K) was derived (unit of measure: microjoules per second (µJ·s)). The estimated transmural pressure (eP ) was assessed as the difference between systemic blood pressure and maximal inspiratory pressure (MIP). The Wilcoxon sign-rank test was used to evaluate differences in energy measurements between normal respiration and the loaded inspiration maneuver. Cardiac kinetic energies and the MIP produced during the MM were compared by linear regression analysis following log transformation in order to assess the correlation between variables.

Main Results: The [Formula: see text] during normal breathing increased from 1.1(0.8; 1.4) to 1.9(1.4; 4.3) µJ·s during MM (p < 0.001). Meanwhile, [Formula: see text] increased from 54 (31; 92) to 84 (44; 153) µJ·s, (p < 0.001). The [Formula: see text] and [Formula: see text] of a set of cardiac cycles during the MM were negatively associated with the MIP (r: -0.59, p < 0.001 and r: -0.53, p = 0.001 for [Formula: see text] and [Formula: see text], respectively). When eP was considered, this association became positive (r: +0.58, p < 0.001 and r:+0.60, p < 0.001, for [Formula: see text] and [Formula: see text], respectively). When the i K was considered as the comparative factor, correlations with the MIP and eP were weak and insignificant. Men had higher values of i K than women.

Significance: Simulated obstructive apnea elicits large rotational i K swings, which are related to the intensity of the inspiratory effort and, as such, to the intensity of the left ventricular afterload. Computation of cardiac kinetic energy through BCG and SCG may shed further light on the impact of obstructive respiratory events on the cardiovascular system.

Download full-text PDF

Source
http://dx.doi.org/10.1088/1361-6579/ab924bDOI Listing

Publication Analysis

Top Keywords

[formula text]
32
0001 [formula
16
simulated obstructive
12
text] [formula
12
detection hemodynamic
8
hemodynamic changes
8
obstructive apnea
8
scg bcg
8
kinetic energy
8
set cardiac
8

Similar Publications

On the causal connection in lifespan correlations and the possible existence of a 'number of life' at molecular level.

Sci Rep

December 2024

Departamento de Astronomía, Universidad de Chile, Casilla 36-D, Santiago, Chile.

Multiple physiological traits correlates with lifespan, being unclear both the causal connection among them and with the process of ageing. In this paper, we show that six traits (such as metabolic rate, mass, heart rate, etc) acting at the system level, are all related to lifespan thru the existence of an approximately constant number of respiration cycles in a lifespan ([Formula: see text]), therefore, we find that those relationships are not independently related to ageing. In addition, we study if the approximately constant [Formula: see text] is possibly linked with the end-of-lifespan somatic mutation burden, another number recently found to be approximately constant (Cagan, Nature 604:517-524, 2022).

View Article and Find Full Text PDF

Diabetes Mellitus combined with Mild Cognitive Impairment (DM-MCI) is a high incidence disease among the elderly. Patients with DM-MCI have considerably higher risk of dementia, whose daily self-care and life management (i.e.

View Article and Find Full Text PDF

Aluminum alloys have promising characteristics which make them more useful in industrial applications for thermal management and entropy of the fluidic system. Hence, the current research deals with the analysis of entropy and thermal performance of (CHO-HO)/50:50% saturated by (AA7072/AA7076/TiAIV) alloys. Traditional problem modified using enhanced characteristics of ternary alloys and hydrocarbon 50:50% base fluid.

View Article and Find Full Text PDF

Early prediction of patient responses to neoadjuvant chemotherapy (NACT) is essential for the precision treatment of early breast cancer (EBC). Therefore, this study aims to noninvasively and early predict pathological complete response (pCR). We used dynamic ultrasound (US) imaging changes acquired during NACT, along with clinicopathological features, to create a nomogram and construct a machine learning model.

View Article and Find Full Text PDF

Identifying and understanding the nonlinear behavior of memristive devices.

Sci Rep

December 2024

Chair of Applied Electrodynamics and Plasma Technology, Ruhr University Bochum, Universitätsstraße 150, 44780, Bochum, Germany.

Nonlinearity is a crucial characteristic for implementing hardware security primitives or neuromorphic computing systems. The main feature of all memristive devices is this nonlinear behavior observed in their current-voltage characteristics. To comprehend the nonlinear behavior, we have to understand the coexistence of resistive, capacitive, and inertia (virtual inductive) effects in these devices.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!