Cohesin Biology: From Passive Rings to Molecular Motors.

Trends Genet

Advanced Microscopy Facility, VBCF, Vienna Biocenter (VBC), Dr. Bohr-Gasse 9, 1030 Vienna, Austria; Department of Chromosome Biology, MPL, University of Vienna, Vienna Biocenter (VBC), Dr. Bohr-Gasse 9, 1030 Vienna, Austria. Electronic address:

Published: June 2020

The loop extrusion hypothesis postulated that extrusion of DNA loops through cohesin rings organizes genomes. Recent findings suggest that cohesin itself is a molecular motor that extrudes DNA. This has important implications not only for the organization of interphase chromatin but also for other processes where cohesin plays vital roles.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.tig.2020.03.001DOI Listing

Publication Analysis

Top Keywords

cohesin
4
cohesin biology
4
biology passive
4
passive rings
4
rings molecular
4
molecular motors
4
motors loop
4
loop extrusion
4
extrusion hypothesis
4
hypothesis postulated
4

Similar Publications

Identification of a distal enhancer of Ucp1 essential for thermogenesis and mitochondrial function in brown fat.

Commun Biol

January 2025

State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, P. R. China.

Uncoupling protein 1 (UCP1) is a crucial protein located in the mitochondrial inner membrane that mediates nonshivering thermogenesis. However, the molecular mechanisms by which enhancer-promoter chromatin interactions control Ucp1 transcriptional regulation in brown adipose tissue (BAT) are unclear. Here, we employed circularized chromosome conformation capture coupled with next-generation sequencing (4C-seq) to generate high-resolution chromatin interaction profiles of Ucp1 in interscapular brown adipose tissue (iBAT) and epididymal white adipose tissue (eWAT) and revealed marked changes in Ucp1 chromatin interaction between iBAT and eWAT.

View Article and Find Full Text PDF

Quantitative imaging of loop extruders rebuilding interphase genome architecture after mitosis.

J Cell Biol

March 2025

Cell Biology and Biophysics Unit, European Molecular Biology Laboratory (EMBL) , Heidelberg, Germany.

How cells establish the interphase genome organization after mitosis is incompletely understood. Using quantitative and super-resolution microscopy, we show that the transition from a Condensin to a Cohesin-based genome organization occurs dynamically over 2 h. While a significant fraction of Condensins remains chromatin-bound until early G1, Cohesin-STAG1 and its boundary factor CTCF are rapidly imported into daughter nuclei in telophase, immediately bind chromosomes as individual complexes, and are sufficient to build the first interphase TAD structures.

View Article and Find Full Text PDF

Pervasive RNA-binding protein enrichment on TAD boundaries regulates TAD organization.

Nucleic Acids Res

January 2025

Department of Orthopaedics and Traumatology, Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong, Hong Kong SAR, China.

Mammalian genome is hierarchically organized by CTCF and cohesin through loop extrusion mechanism to facilitate the organization of topologically associating domains (TADs). Mounting evidence suggests additional factors/mechanisms exist to orchestrate TAD formation and maintenance. In this study, we investigate the potential role of RNA-binding proteins (RBPs) in TAD organization.

View Article and Find Full Text PDF

B Chromosome Transcriptional Inactivation in the Spermatogenesis of the Grasshopper .

Genes (Basel)

November 2024

Departamento de Biología, Universidad Autónoma de Madrid, 28049 Madrid, Spain.

Background/objectives: We analyzed the relationship between synapsis, recombination, and transcription during the spermatogenesis of the grasshopper carrying B chromosomes (type B1).

Methods: The progression of synapsis was interpreted according to the dynamics of the cohesin subunit SMC3 axes. DNA double-strand breaks were revealed by RAD51 immunolabeling, while transcriptional activity was determined by the presence of RNA polymerase II phosphorylated at serine 2 (pRNApol II) immunolabeling.

View Article and Find Full Text PDF
Article Synopsis
  • PAX2 is identified as an endometrial tumor suppressor frequently inactivated through a unique epigenetic mechanism, rather than promoter hypermethylation.
  • In 80% of endometrial cancers, the loss of PAX2 is linked to transcriptional silencing, which alters chromatin features, contributing to cancer development.
  • The research highlights new pathways for understanding endometrial cancer origins, potentially influencing future diagnosis and treatment approaches.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!