ε-Iron nitrides with the general formula ε-Fe3N1+x (-0.40 < x < 0.48) have been widely studied due to their interesting magnetism. However, the phase diagram of the Fe-N binary system indicates the absence of monophasic ε-Fe3N1+x (x < 0) compounds that are stable below their synthetic temperatures. Here, ε-Fe3N1+x (-0.12 ≤ x ≤ -0.01) nanoparticles with excellent thermal stability and magnetic properties were synthesized by a simple chemical solution method. The ε-Fe3N1+x nanoparticles with space group P6322 have excellent oxidation resistance due to a carbon shell with a thickness of 2-3 nm. NPD refinements suggest that the ε-Fe3N1+x nanoparticles possess a highly ordered arrangement of N atoms and their magnetic moments align parallel to the c axis. The Curie temperature (TC) and room temperature saturation magnetization (MS) increase with decreasing N content, which results in record-high TC (632 K) and MS (169.2 emu g-1) at x = -0.12, much higher than the magnetic properties of the corresponding bulk materials. The significant enhancements in the intrinsic magnetic properties and thermal stability of ε-Fe3N1+x are ascribed to chemically engineering the stoichiometry and N occupancy from the disordered to the ordered site.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d0nr02424d | DOI Listing |
Nat Chem Biol
January 2025
Department of Chemistry, The Scripps Research Institute, La Jolla, CA, USA.
Targeted protein degradation (TPD) offers a promising approach for chemical probe and drug discovery that uses small molecules or biologics to direct proteins to the cellular machinery for destruction. Among the >600 human E3 ligases, CRBN and VHL have served as workhorses for ubiquitin-proteasome system-dependent TPD. Identification of additional E3 ligases capable of supporting TPD would unlock the full potential of this mechanism for both research and pharmaceutical applications.
View Article and Find Full Text PDFSci Rep
January 2025
College of Engineering, Applied Science University (ASU), Manama, Kingdom of Bahrain.
This paper presents an in-depth analytical investigation into the time-dependent flow of a Casson hybrid nanofluid over a radially stretching sheet. The study introduces the effects of magnetic fields and thermal radiation, along with velocity and thermal slip, to model real-world systems for enhancing heat transfer in critical industrial applications. The hybrid nanofluid consists of three nanoparticles-Copper and Graphene Oxide-suspended in Kerosene Oil, selected for their stable and superior thermal properties.
View Article and Find Full Text PDFSci Rep
January 2025
School of Earth Sciences, China University of Geosciences, Wuhan, 430074, Hubei, China.
Soil magnetic records in Quaternary red earth (QRE) deposits contain a valuable record of paleoclimate information, providing insights into controls on Earth's climate system in the past and potentially helping to predict its response to perturbations in the future. Here, analysis of the environmental magnetism and mineralogy of the Xuancheng QRE (Anhui Province, South China) shows that magnetic variation was strongly linked to production of authigenic ferrimagnetic minerals such as maghemite. Fine-grained maghemite formed during the weathering-related transformation of iron-bearing illite to vermiculite, generating aggregates of vermiculite or mixed-layer illite-vermiculite.
View Article and Find Full Text PDFSci Rep
January 2025
Military Institute of Engineering, Praça General Tibúrcio 80, Urca, Rio de Janeiro, RJ, 22290-270, Brazil.
The antiscale magnetic treatment (ASMT) claims to utilize magnetic field to combat scaling. However, its underlying mechanism, effectiveness, and reliability remain controversial. To address these contentious aspects, we analyze the influence of a magnetic field on the different stages of typical scale formation, using [Formula: see text] as a model scale.
View Article and Find Full Text PDFACS Nano
January 2025
School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong518172, China.
The hybrid magnetic heterostructures and superlattices, composed of organic and inorganic materials, have shown great potential for quantum computing and next-generation information technology. Organic materials generally possess designable structural motifs and versatile optical, electronic, and magnetic properties, but are too delicate for robust integration into solid-state devices. In contrast, inorganic systems provide robust solid-state interface and excellent electronic properties but with limited customization space.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!