The purpose of the study involves the development of an anaerobic, thermophilic microbial consortium TERIK from the high temperature reservoir of Gujarat for enhance oil recovery. To isolate indigenous microbial consortia, anaerobic baltch media were prepared and inoculated with the formation water; incubated at 65°C for 10 days. Further, the microbial metabolites were analyzed by gas chromatography, FTIR and surface tension. The efficiency of isolated consortia towards enhancing oil recovery was analyzed through core flood assay. The novelty of studied consortia was that, it produces biomass (600 mg/l), bio-surfactant (325 mg/l), and volatile fatty acids (250 mg/l) at 65°C in the span of 10 days, that are adequate to alter the surface tension (70 to 34 mNm -1) and sweep efficiency of zones facilitating the displacement of oil. TERIK was identified as Clostridium sp. The FTIR spectra of biosurfactant indicate the presence of N-H stretch, amides and polysaccharide. A core flooding assay was designed to explore the potential of TERIK towards enhancing oil recovery. The results showed an effective reduction in permeability at residual oil saturation from 2.14 ± 0.1 to 1.39 ± 0.05 mD and 19% incremental oil recovery.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7217464 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0229889 | PLOS |
Sci Rep
January 2025
School of Minerals and Energy Resources Engineering, University of New South Wales, Sydney, 2052, Australia.
N is generally employed as a displacement agent to enhance gas recovery in shale gas-bearing reservoirs. However, the primary displacement mechanism in the subsurface still needs to be clarified due to the characteristics of shale reservoirs with low porosity and abundant nanopores. This study employs the Molecular Dynamics (MD) simulation method to investigate the effects of N on the CH accumulation and displacement processes by adopting practical conditions in the subsurface environment.
View Article and Find Full Text PDFFood Sci Nutr
January 2025
Dairy and Functional Foods Research Unit, Eastern Regional Research Center, Agricultural Research Service U.S. Department of Agriculture Wyndmoor Pennsylvania USA.
Recovery of the butterfat in waste ice cream may be an opportunity to mitigate food and economic loss. Previous efforts to recover such fat have succeeded in producing a fat-enriched fraction but have not succeeded in demulsifying the fat. In the present study, a method involving a sequence of emulsion-breaking steps is shown to be effective for releasing a majority of the fat from waste ice cream as free, unemulsified oil.
View Article and Find Full Text PDFRSC Adv
January 2025
Institute of Porous Flow and Fluid Mechanics, Chinese Academy of Sciences Langfang Hebei 065007 China.
Supercritical CO, as an environmentally friendly and pollution-free fluid, has been applied in various EOR techniques such as CO flooding. However, the low viscosity of the gas leads to issues such as early breakthrough, viscous fingering, and gravity override in practical applications. Although effective mobility-control methods, such as CO WAG (water alternating gas)-, CO foam-, and gel-based methods, have been developed to mitigate these phenomena, they do not fundamentally solve the problem of the high gas-oil mobility ratio, which leads to reduced gas sweep efficiency.
View Article and Find Full Text PDFAnal Chim Acta
February 2025
Food Laboratory of Zhongyuan, Luohe, 462000, Henan Province, PR China.
Background: Edible oils are susceptible to contamination with polycyclic aromatic hydrocarbons (PAHs) throughout production, storage, and transportation processes due to their lipophilic nature. The necessity of quantifying PAHs present in complex oil matrices at trace levels, which bind strongly to impurities in oil matrices, poses a major challenge to the accurate quantification of these contaminants. Therefore, the development of straightforward and effective methods for the separation and enrichment of PAHs in oil samples prior to instrumental analysis is paramount to guaranteeing food safety.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science & Technology, No. 29, 13th Avenue, Tianjin Economic and Technological Development Area, Tianjin 300457, China. Electronic address:
In this study, we innovatively prepared a multifunctional lignin crosslinked polyacrylamide (L-cPAM) hydrogel by a sequential two-step strategy of crosslinking of lignin and crosslinked polyacrylamide (cPAM) followed by the polymerization of cPAM. The hydrogen bonding and crosslinking between the molecular chains of lignin and PAM established a rigid and porous network structure, which provided the L-cPAM hydrogel with excellent mechanical strength, thermal stability, and salinity resistance. A series of lignin dosages (0 to 30 %) were investigated during the crosslinking of lignin and PAM.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!