Super-enhancers (SE) have become a popular concept and are widely used as a feature defining key identity genes. Here, we provide perspectives on the use of SE to define and identify cell/tissue-identity genes. By mining SE and their associated genes using murine functional genomics data, we highlight and discuss current limitations and open questions regarding both the sensitivity and specificity of identity genes/transcription factors predicted by SE. In this context, we point to cell/tissue-specific promoters as an important additional level of information, which we propose to combine with SE when aiming to define potential identity genes.

Download full-text PDF

Source
http://dx.doi.org/10.2217/epi-2019-0290DOI Listing

Publication Analysis

Top Keywords

cell/tissue-identity genes
8
identity genes
8
genes
5
perspectives super-enhancers
4
super-enhancers defining
4
defining feature
4
feature cell/tissue-identity
4
genes super-enhancers
4
super-enhancers popular
4
popular concept
4

Similar Publications

Super-enhancers (SE) have become a popular concept and are widely used as a feature defining key identity genes. Here, we provide perspectives on the use of SE to define and identify cell/tissue-identity genes. By mining SE and their associated genes using murine functional genomics data, we highlight and discuss current limitations and open questions regarding both the sensitivity and specificity of identity genes/transcription factors predicted by SE.

View Article and Find Full Text PDF

The peach HECATE3-like gene FLESHY plays a double role during fruit development.

Plant Mol Biol

May 2016

Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, viale dell'Università, 16, Agripolis, 35020, Legnaro, Italy.

Tight control of cell/tissue identity is essential for a correct and functional organ patterning, an important component of overall fruit development and eventual maturation and ripening. Despite many investigations regarding the molecular determinants of cell identity in fruits of different species, a useful model able to depict the regulatory networks governing this relevant part of fruit development is still missing. Here we described the peach fruit as a system to link the phenotype of a slow ripening (SR) selection to an altered transcriptional regulation of genes involved in determination of mesocarp cell identity providing insight toward molecular regulation of fruit tissue formation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!