Super-enhancers (SE) have become a popular concept and are widely used as a feature defining key identity genes. Here, we provide perspectives on the use of SE to define and identify cell/tissue-identity genes. By mining SE and their associated genes using murine functional genomics data, we highlight and discuss current limitations and open questions regarding both the sensitivity and specificity of identity genes/transcription factors predicted by SE. In this context, we point to cell/tissue-specific promoters as an important additional level of information, which we propose to combine with SE when aiming to define potential identity genes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2217/epi-2019-0290 | DOI Listing |
Epigenomics
April 2020
University of Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, Lille F-59000 Lille, France.
Super-enhancers (SE) have become a popular concept and are widely used as a feature defining key identity genes. Here, we provide perspectives on the use of SE to define and identify cell/tissue-identity genes. By mining SE and their associated genes using murine functional genomics data, we highlight and discuss current limitations and open questions regarding both the sensitivity and specificity of identity genes/transcription factors predicted by SE.
View Article and Find Full Text PDFPlant Mol Biol
May 2016
Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, viale dell'Università, 16, Agripolis, 35020, Legnaro, Italy.
Tight control of cell/tissue identity is essential for a correct and functional organ patterning, an important component of overall fruit development and eventual maturation and ripening. Despite many investigations regarding the molecular determinants of cell identity in fruits of different species, a useful model able to depict the regulatory networks governing this relevant part of fruit development is still missing. Here we described the peach fruit as a system to link the phenotype of a slow ripening (SR) selection to an altered transcriptional regulation of genes involved in determination of mesocarp cell identity providing insight toward molecular regulation of fruit tissue formation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!