Eukaryotic RNA interference (RNAi) results in gene silencing upon the sequence-specific degradation of target transcripts by complementary small RNAs (sRNAs). In plants, RNAi-based tools have been optimized for high efficacy and high specificity, and are extensively used in gene function studies and for crop improvement. However, efficient methods for finely adjusting the degree of induced silencing are missing. Here, we present two different strategies based on artificial sRNAs for fine-tuning targeted RNAi efficacy in plants. First, the degree of silencing induced by synthetic-trans-acting small interfering RNAs (syn-tasiRNAs) can be adjusted by modifying the precursor position from which the syn-tasiRNA is expressed. The accumulation and efficacy of Arabidopsis TAS1c-based syn-tasiRNAs progressively decrease as the syn-tasiRNA is expressed from positions more distal to the trigger miR173 target site. And second, syn-tasiRNA activity can also be tweaked by modifying the degree of base-pairing between the 3' end of the syn-tasiRNA and the 5' end of the target RNA. Both strategies were used to finely modulate the degree of silencing of endogenous and exogenous target genes in Arabidopsis thaliana and Nicotiana benthamiana. New high-throughput syn-tasiRNA vectors were developed and functionally analyzed, and should facilitate the precise control of gene expression in multiple plant species.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7293048PMC
http://dx.doi.org/10.1093/nar/gkaa343DOI Listing

Publication Analysis

Top Keywords

targeted rnai
8
rnai efficacy
8
small rnas
8
degree silencing
8
syn-tasirna expressed
8
syn-tasirna
5
fine-tune control
4
control targeted
4
efficacy
4
efficacy plant
4

Similar Publications

Double-stranded RNA (dsRNA) mediated RNA interference (RNAi) is a tool in functional gene study and pest control. However, RNAi efficiency in Lepidoptera is low compared to the RNAi sensitive Coleoptera. Previous studies on RNAi in the silkworm Bombyx mori, the lepidopteran model insect, were performed by injection only.

View Article and Find Full Text PDF

RNA interference (RNAi) has rapidly matured as a novel therapeutic approach. In this field, chemical modifications have been critical to the clinical success of short interfering RNAs (siRNAs). Notwithstanding the significant advances, achieving robust durability and gene silencing in extrahepatic tissues, as well as reducing off-target effects of siRNA, are areas where chemical modifications can still improve siRNA performance.

View Article and Find Full Text PDF

Powdery mildew, caused by the fungus , is one of the primary causes of grape yield loss across the globe. While numerous resistance loci have been identified in various grapevine species, the genetic determinants of susceptibility to remain largely unexplored. Understanding the genetics of susceptibility for pathogenesis is equally important for developing durable resistance grapevines against this pathogen.

View Article and Find Full Text PDF

Nlnemo suppresses of BMP signaling in wing development of the brown planthopper, Nilaparvata lugens.

Int J Biol Macromol

January 2025

Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China. Electronic address:

Nemo-like kinases (NLKs) integrate multiple signaling pathways and exhibit functional diversity in developmental processes, including the bone morphogenetic protein (BMP) pathway. However, their roles in insect wing development, particularly in hemimetabolous insects like the brown planthopper (Nilaparvata lugens), remain poorly understood. Here, we investigated the role of Nlnemo (Nlnmo), an NLK, in the wing development of N.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!