Radiation-induced augmentation in dendritic cell function is mediated by apoptotic bodies/STAT5/Zbtb46 signaling.

Int J Radiat Biol

Immunology Section, Radiation Biology & Health Sciences Division, Bio-Science Group, Bhabha Atomic Research Centre, Mumbai, India.

Published: August 2020

To evaluate the effect of ionizing radiation (IR) exposure on differentiation and maturation of dendritic cells (DC). Bone marrow progenitor cells irradiated in vitro or isolated from mice exposed to whole body or localized tumor irradiation were differentiated into DC. Phenotypic maturation of DC was characterized by labeling with specific antibodies and flow cytometry analysis. Cytokines were estimated by ELISA. Splenic and bone marrow-derived DC (BMDC) from tumor-bearing mice exposed to localized irradiation showed abrogation of tumor-induced immunosuppression. This was not due to the effect of radiation on tumor cells as DC derived from normal mice exposed to whole-body irradiation (WBI) also showed increase in immune-activating potential of DC. This was observed in terms of increased phenotypic and functional activation of DCs. This phenomenon was also recapitulated if DC were differentiated from in vitro irradiated progenitor cells and was found to be due to STAT5/Zbtb46 signaling mediated by the irradiation-induced apoptotic bodies (ABs). When these ABs were depleted using annexin-beads, these effects were reversed confirming the involvement of this pathway. The role of ABs was further validated in DC derived from mice exposed to WBI in adaptive response experiments with 0.1 Gy priming dose prior to 2 Gy challenge dose. A corresponding reduction in DC maturation markers was observed with decrease in apoptosis in vivo. Further, these DCs derived from irradiated progenitors (IP) could resist the suppressive effects of tumor conditioned medium (TCM) and had increased immune-activating potential as seen in the tumor-bearing mice. Though radiation is the most commonly used therapeutic modality for cancer, its effects on dendritic cell differentiation is not completely understood. We demonstrate here for the first time that exposure to select doses of IR can increase immune-activating potential of DC through ABs. This can have implications in selection of appropriate doses of IR during radiotherapy of cancer patients.

Download full-text PDF

Source
http://dx.doi.org/10.1080/09553002.2020.1767818DOI Listing

Publication Analysis

Top Keywords

mice exposed
16
immune-activating potential
12
dendritic cell
8
progenitor cells
8
tumor-bearing mice
8
increase immune-activating
8
mice
5
radiation-induced augmentation
4
augmentation dendritic
4
cell function
4

Similar Publications

Gualou Guizhi Granule inhibits microglia-mediated neuroinflammation to protect against neuronal apoptosis and .

Front Immunol

January 2025

Institute of Structural Pharmacology and Traditional Chinese Medicine (TCM) Chemical Biology, Fujian Key Laboratory of Chinese Materia Medica, College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, China.

Object: Neuroinflammation mediated by microglia has emerged as a critical factor in ischemic stroke and neuronal damage. Gualou Guizhi Granule (GLGZG) has been shown to suppress inflammation in lipopolysaccharide (LPS)-activated microglia, though the underlying mechanisms and its protective effects against neuronal apoptosis remain unclear. This study aims to investigate how GLGZG regulates the Notch signaling pathway in microglia to reduce neuroinflammation and protect neurons from apoptosis.

View Article and Find Full Text PDF

Resolution of inflammation is essential for normal tissue healing and regeneration, with macrophages playing a key role in regulating this process through phenotypic changes from a pro-inflammatory to an anti-inflammatory state. Pharmacological and mechanical (mechanotherapy) techniques can be employed to polarize macrophages toward an anti-inflammatory phenotype, thereby diminishing inflammation. One clinically relevant pharmacological approach is the inhibition of Transient Receptor Potential Vanilloid 4 (TRPV4).

View Article and Find Full Text PDF

The study aimed to investigate the stability and anti-allergic efficacy of phycocyanin through the construction of microcapsules. Phycocyanin (PC), a blue pigment found in microalgae, has attracted significant attention due to its anti-allergic properties. However, it is susceptible to instability when exposed to light, heat, and changes in pH.

View Article and Find Full Text PDF

Background: Accelerated continuous theta burst stimulation (acTBS) is a more intensive and rapid protocol than continuous theta burst stimulation (cTBS). However, it remains uncertain whether acTBS exhibits anxiolytic effects. The aim of this study was to investigate the impact of acTBS on anxiety model mice and elucidate the underlying mechanisms involved, in order to provide a more comprehensive understanding of its effects.

View Article and Find Full Text PDF

Background: Millions worldwide are exposed to elevated levels of arsenic that significantly increase their risk of developing atherosclerosis, a pathology primarily driven by immune cells. While the impact of arsenic on immune cell populations in atherosclerotic plaques has been broadly characterized, cellular heterogeneity is a substantial barrier to in-depth examinations of the cellular dynamics for varying immune cell populations.

Objectives: This study aimed to conduct single-cell multi-omics profiling of atherosclerotic plaques in apolipoprotein E knockout () mice to elucidate transcriptomic and epigenetic changes in immune cells induced by arsenic exposure.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!