Eliminating primer dimers and improving SNP detection using self-avoiding molecular recognition systems.

Biol Methods Protoc

Foundation for Applied Molecular Evolution (FfAME), 13709 Progress Blvd, Box 7, Alachua, FL 32615, USA.

Published: February 2020

Despite its widespread value to molecular biology, the polymerase chain reaction (PCR) encounters modes that unproductively consume PCR resources and prevent clean signals, especially when high sensitivity, high SNP discrimination, and high multiplexing are sought. Here, we show how "self-avoiding molecular recognition systems" (SAMRS) manage such difficulties. SAMRS nucleobases pair with complementary nucleotides with strengths comparable to the A:T pair, but do not pair with other SAMRS nucleobases. This should allow primers holding SAMRS components to avoid primer-primer interactions, preventing primer dimers, allowing more sensitive SNP detection, and supporting higher levels of multiplex PCR. The experiments here examine the PCR performances of primers containing different numbers of SAMRS components placed strategically at different positions, and put these performances in the context of estimates of SAMRS:standard pairing strengths. The impact of these variables on primer dimer formation, the overall efficiency and sensitivity of SAMRS-based PCR, and the value of SAMRS primers when detecting single nucleotide polymorphisms (SNPs) are also evaluated. With appropriately chosen polymerases, SNP discrimination can be greater than the conventional allele-specific PCR, with the further benefit of avoiding primer dimer artifacts. General rules guiding the design of SAMRS-modified primers are offered to support medical research and clinical diagnostics products.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7200914PMC
http://dx.doi.org/10.1093/biomethods/bpaa004DOI Listing

Publication Analysis

Top Keywords

primer dimers
8
snp detection
8
molecular recognition
8
snp discrimination
8
samrs nucleobases
8
samrs components
8
primer dimer
8
pcr
6
samrs
6
eliminating primer
4

Similar Publications

Rapid detection of SARS-CoV-2 RNA using a one-step fast multiplex RT-PCR coupled to lateral flow immunoassay.

BMC Infect Dis

December 2024

Laboratory of Molecular Epidemiology and Experimental Pathology, LR16IPT04, Institut Pasteur de Tunis, University of Tunis El Manar, Tunis, LR16IPT04, Tunisia.

Background: The COVID-19 has put emphasis on pivotal needs for diagnosis and surveillance worldwide, with the subsequent shortage of diagnostic reagents and kits. Therefore, it has become strategic for the countries to access diagnostics, expand testing capacity, and develop their own diagnostic capabilities and alternative rapid accurate nucleic acid diagnostics that are at lower costs. Here, we propose a visual SARS-CoV-2 detection using a one-step fast multiplex reverse transcription-PCR (RT-PCR) amplification coupled to lateral flow immunoassay detection on a PCRD device (Abingdon Health, UK).

View Article and Find Full Text PDF

The self-quenching fluorogenic probe facilitates precise identification of LAMP (loop-mediated isothermal amplification) amplicons, unaffected by non-specific products resulting from primer dimers. However, low quenching efficiency by surrounding nucleobases leads to high background signal, posing significant challenges for visual inspection with the naked eye. The present study aims to identify an oligonucleotide sequence that is complementary to the self-quenching fluorogenic probe, and to employ the fluorescence super-quenching mechanism of double-stranded DNA to establish a visualization system for the LAMP assay.

View Article and Find Full Text PDF

Straightforward genotyping can provide timely diagnostic information for diseases prevention and treatment. Taking advantages of speediness and convenience, although numerous genotyping strategies combined loop-mediated isothermal amplification (LAMP) and lateral flow have been reported to satisfy the demand of point-of-care test, the false positive result caused by aerosol and primer dimer as an innate conflict seriously limits their practical application. In this study, both aerosol and primer dimer as extrinsic and intrinsic inducements respectively are first broken through at one stroke based on an integrated immunochromatographic biosensor.

View Article and Find Full Text PDF

Respiratory infections are one of the leading causes of death worldwide. Rapid and accurate detection of pathogens is crucial for timely treatment. This study established a detection method based on multiplex PCR combined with capillary electrophoresis, capable of simultaneously detecting 28 common respiratory pathogens.

View Article and Find Full Text PDF

Nanoplasmonic microarray-based solid-phase amplification for highly sensitive and multiplexed molecular diagnostics: application for detecting SARS-CoV-2.

Mikrochim Acta

October 2024

Advanced Bio and Healthcare Materials Research Division, Korea Institute of Materials Science (KIMS), 797, Changwon-Daero, Seongsan-Gu, Changwon-Si, Gyeongsangnam-Do, 51508, Republic of Korea.

A novel approach is introduced using nanoplasmonic microarray-based solid-phase recombinase polymerase amplification (RPA) that offers high sensitivity and multiplexing capabilities for gene detection. Nanoplasmonic microarrays were developed through one-step immobilization of streptavidin/biotin primers and fine-tuning the amplicon size to achieve high plasmon-enhanced fluorescence (PEF) on the nanoplasmonic substrate, thereby improving sensitivity. The specificity and sensitivity of solid-phase RPA on nanoplasmonic microarrays was evaluated in detecting E, N, and RdRP genes of SARS-CoV-2.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!