Background: OTU domain-containing protein 3 (OTUD3), as a deubiquitinase (DUB) belonging to the ovarian tumor protease (OTU) family, has been reported to suppress tumor via OTUD3-PTEN signaling axis. Glioma is the most common primary intracranial tumor with high invasiveness and poor prognosis. Although less than half of the patients have phosphatase and tension homologue deleted in chromosome 10 (PTEN) mutations or homozygous deletions, two-thirds of glioma possess diminished PTEN expression. Hence, it is conceivable that other obscure mechanisms may cause the decreased expression of the PTEN protein.
Methods: OTUD3 expression was assessed in human normal and glioma tissues at The Cancer Genome Atlas (TCGA) database (https://www.cancer.gov/) and Genotype-Tissue Expression (GTEx) database (https://commonfund.nih.gov/GTex). The mRNA levels of OTUD3 in C6 cells and primary astrocytes were detected using real-time fluorescence quantitative PCR. Western blot was performed to assay PTEN and OTUD3 protein expression in C6 cells and primary astrocytes. By generating Kaplan-Meier curves, we predicted the association between OTUD3 expression and prognosis in glioma patients.
Results: (I) OTUD3 transcription was markedly downregulated in glioma based on microarray data for gene expression between human gliomas and normal brain samples. (II) The mRNA levels of OTUD3 in C6 cells was significantly lower than that of in primary astrocytes. (III) The expressions of protein PTEN and OTUD3 in C6 cells were significantly decreased when compared with primary astrocytes. (IV) Glioma patients with high expression of OTUD3 had a longer survival time than patients with low expression.
Conclusions: Our present findings demonstrated that low expression of OTUD3 in glioma may be involved in PTEN related glioma and may contribute to patient survival.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7210146 | PMC |
http://dx.doi.org/10.21037/atm.2020.03.51 | DOI Listing |
J Neurointerv Surg
January 2025
Department of Neurology, Emory University School of Medicine, Atlanta, Georgia, USA
Background: Previous studies have shown that when thrombectomy has failed, rescue intracranial stenting is associated with better clinical outcomes compared with failed reperfusion. However, comparative data regarding stent type are lacking.
Objective: To compare the procedural and clinical outcomes of balloon-mounted stents (BMS) with those of self-expandable stents (SES).
Neurochem Res
January 2025
Department of Basic Sciences, School of Veterinary Medicine, Shiraz University, Shiraz, Iran.
In recent decades, researchers and clinicians have increasingly focused on glial cell function. One of the primary mechanisms influencing these functions is through extracellular vesicles (EVs), membrane-bound particles released by cells that are essential for intercellular communication. EVs can be broadly categorized into four main types based on their size, origin, and biogenesis: large EVs, small EVs (sEVs), autophagic EVs, and apoptotic bodies.
View Article and Find Full Text PDFRedox Biol
January 2025
Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198-5880, USA. Electronic address:
Methamphetamine is a widely abused drug associated with significant neuroinflammation and neurodegeneration, mainly through the activation of glial cells and neurons in the central nervous system. This study investigates the role of the astrocyte-specific NOD-like receptor family pyrin domain-containing protein 6 (NLRP6) inflammasome in methamphetamine-induced astrocytic pyroptosis and neuroinflammation. Our findings demonstrate that methamphetamine exposure induces NLRP6-dependent pyroptosis, astrocyte activation, and the release of proinflammatory cytokines in mouse primary astrocytes.
View Article and Find Full Text PDFJ Neuroinflammation
January 2025
Department of Neurology, Division of Neuroimmunology, School of Medicine, Johns Hopkins University, Baltimore, MD, 21287, USA.
Chronic innate immune activation in the central nervous system (CNS) significantly contributes to neurodegeneration in progressive multiple sclerosis (MS). Using multiple experimental autoimmune encephalomyelitis (EAE) models, we discovered that NLRX1 protects neurons in the anterior visual pathway from inflammatory neurodegeneration. We quantified retinal ganglion cell (RGC) density and optic nerve axonal degeneration, gliosis, and T-cell infiltration in Nlrx1 and wild-type (WT) EAE mice and found increased RGC loss and axonal injury in Nlrx1 mice compared to WT mice in both active immunization EAE and spontaneous opticospinal encephalomyelitis (OSE) models.
View Article and Find Full Text PDFAlzheimers Res Ther
January 2025
Translational Neurodegeneration Research and Neuropathology Lab, Department of Clinical Medicine (KlinMed), Medical Faculty, University of Oslo (UiO) and Section of Neuropathology Research, Department of Pathology (PAT), Clinics for Laboratory Medicine (KLM), Oslo University Hospital (OUS), Sognsvannsveien 20, Oslo, NO-0372, Norway.
Background: Specific genetic variants in the ATP-binding cassette transporter A7 locus (ABCA7) are associated with an increased risk of Alzheimer's disease (AD). ABCA7 transports lipids from/across cell membranes, regulates Aβ peptide processing and clearance, and modulates microglial and T-cell functions to maintain immune homeostasis in the brain. During AD pathogenesis, neuroinflammation is one of the key mechanisms involved.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!