Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 143
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 994
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3134
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Current biomaterials and tissue engineering techniques have shown a promising efficacy on full-thickness articular cartilage defect repair in clinical practice. However, due to the difficulty of implanting biomaterials or tissue engineering constructs into a partial-thickness cartilage defect, it remains a challenge to provide a satisfactory cure in joint surface regeneration in the early and middle stages of osteoarthritis. In this study, we focused on a ready-to-use tissue-adhesive joint surface paint (JS-Paint) capable of promoting and enhancing articular surface cartilage regeneration. The JS-Paint is mainly composed of -(2-aminoethyl)-4-(4-(hydroxymethyl)-2-methoxy-5-nitrosophenoxy) butanamide (NB)-coated silk fibroin microparticles and possess optimal cell adhesion, migration, and proliferation properties. NB-modified silk fibroin microparticles can directly adhere to the cartilage and form a smooth layer on the surface via the photogenerated aldehyde group of NB reacting with the -NH groups of the cartilage tissue. JS-Paint treatment showed a significant promotion of cartilage regeneration and restored the smooth joint surface at 6 weeks postsurgery in a rabbit model of a partial-thickness cartilage defect. These findings revealed that silk fibroin can be utilized to bring about a tissue-adhesive paint. Thus, the JS-Paint strategy has some great potential to enhance joint surface regeneration and revolutionize future therapeutics of early and middle stages of osteoarthritis joint ailments.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.0c01776 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!