A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Abnormalities in metabolic pathways in celiac disease investigated by the metabolic profiling of small intestinal mucosa, blood plasma and urine by NMR spectroscopy. | LitMetric

Celiac disease (CeD) is an autoimmune enteropathy caused by gluten intake in genetically predisposed individuals. We investigated the metabolism of CeD by metabolic profiling of intestinal mucosa, blood plasma and urine using NMR spectroscopy and multivariate analysis. The metabolic profile of the small intestinal mucosa was compared between patients with CeD (n = 64) and disease controls (DCs, n = 30). The blood plasma and urinary metabolomes of CeD patients were compared with healthy controls (HCs, n = 39). Twelve metabolites (proline (Pro), arginine (Arg), glycine (Gly), histidine (His), glutamate (Glu), aspartate, tryptophan (Trp), fumarate, formate, succinate (Succ), glycerophosphocholine (GPC) and allantoin (Alln)) of intestinal mucosa differentiated CeD from controls. The metabolome of blood plasma with 18 metabolites (Pro, Arg, Gly, alanine, Glu, glutamine, glucose (Glc), lactate (Lac), acetate (Ace), acetoacetate (AcAc), β-hydroxybutyrate (β-OHB), pyruvate (Pyr), Succ, citrate (Cit), choline (Cho), creatine (Cr), phosphocreatine (PCr) and creatinine) and 9 metabolites of urine (Pro, Trp, β-OHB, Pyr, Succ, N-methylnicotinamide (NMN), aminohippurate (AHA), indoxyl sulfate (IS) and Alln) distinguished CeD from HCs. Our data demonstrated changes in nine metabolic pathways. The altered metabolites were associated with increased oxidative stress (Alln), impaired healing and repair mechanisms (Pro, Arg), compromised anti-inflammatory and cytoprotective processes (Gly, His, NMN), altered energy metabolism (Glc, Lac, β-OHB, Ace, AcAc, Pyr, Succ, Cit, Cho, Cr and PCr), impaired membrane metabolism (GPC and Cho) and intestinal dysbiosis (AHA and IS). An orthogonal partial least square discriminant analysis model provided clear differentiation between patients with CeD and controls in all three specimens. A classification model built by combining the distinguishing metabolites of blood plasma and urine samples gave an AUC of 0.99 with 97.7% sensitivity, 93.3% specificity and a predictive accuracy of 95.1%, which was higher than for the models built separately using small intestinal mucosa, blood plasma and urine. In conclusion, a panel of metabolic biomarkers in intestinal biopsies, plasma and urine samples has potential to differentiate CeD from controls and may complement traditional tests to improve the diagnosis of CeD.

Download full-text PDF

Source
http://dx.doi.org/10.1002/nbm.4305DOI Listing

Publication Analysis

Top Keywords

blood plasma
24
intestinal mucosa
20
plasma urine
20
small intestinal
12
mucosa blood
12
ced controls
12
pyr succ
12
ced
9
metabolic pathways
8
celiac disease
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!