The uptake of tau amyloid fibrils is facilitated by the cellular prion protein and hampers prion propagation in cultured cells.

J Neurochem

Laboratory of Prion Biology, Department of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati (SISSA), Trieste, Italy.

Published: December 2020

Tauopathies are prevalent, invariably fatal brain diseases for which no cure is available. Tauopathies progressively affect the brain through cell-to-cell transfer of tau protein amyloids, yet the spreading mechanisms remain unknown. Here we show that the cellular prion protein (PrP ) facilitates the uptake of tau aggregates by cultured cells, possibly by acting as an endocytic receptor. In mouse neuroblastoma cells, pull-down experiments revealed that tau amyloids bind to PrP . Confocal images of both wild-type and PrP -knockout N2a cells treated with fluorescently labeled synthetic tau fibrils showed that the internalization was reduced in isogenic cells devoid of the gene encoding PrP . Pre-treatment of the same cells with antibodies against N-proximal epitopes of PrP impaired the binding of tau amyloids and decreased their uptake. Surprisingly, exposure of chronically prion-infected cells to tau amyloids reduced the accumulation of aggregated prion protein and this effect lasted for more than 72 hr after amyloid removal. These results point to bidirectional interactions between the two proteins: while PrP mediates the entrance of tau fibrils in cells, PrP buildup is greatly reduced in their presence, possibly because of an impairment in the prion conversion process.

Download full-text PDF

Source
http://dx.doi.org/10.1111/jnc.15040DOI Listing

Publication Analysis

Top Keywords

prion protein
12
tau amyloids
12
uptake tau
8
cellular prion
8
cells
8
cultured cells
8
tau fibrils
8
tau
7
prp
7
prion
5

Similar Publications

Prions are assemblies of misfolded prion protein that cause several fatal and transmissible neurodegenerative diseases, with the most common phenotype in humans being sporadic Creutzfeldt-Jakob disease (sCJD). Aside from variation of the prion protein itself, molecular risk factors are not well understood. Prion and prion-like mechanisms are thought to underpin common neurodegenerative disorders meaning that the elucidation of mechanisms could have broad relevance.

View Article and Find Full Text PDF

Prion diseases, including Creutzfeldt-Jakob disease (CJD), are deadly neurodegenerative disorders characterized by the buildup of abnormal prion proteins in the brain. This accumulation disrupts neuronal functions, leading to the rapid onset of psychiatric symptoms, ataxia, and cognitive decline. The urgency of timely diagnosis for effective treatment necessitates the identification of strongly correlated biomarkers in bodily fluids, which makes our research crucial.

View Article and Find Full Text PDF

Identification of the Highly Polymorphic Prion Protein Gene () in Frogs ).

Animals (Basel)

January 2025

Department of Biological Sciences, Andong National University, Andong 36729, Republic of Korea.

Prion diseases are fatal neurodegenerative diseases that can be transmitted by infectious protein particles, PrPs, encoded by the endogenous prion protein gene (). The origin of prion seeds is unclear, especially in non-human hosts, and this identification is pivotal to preventing the spread of prion diseases from host animals. Recently, an abnormally high amyloid propensity in prion proteins (PrPs) was found in a frog, of which the genetic variations in the gene have not been investigated.

View Article and Find Full Text PDF

α-Synucleinopathies constitute a spectrum of neurodegenerative disorders, including Parkinson's disease (PD), Lewy body dementia (LBD), Multiple System Atrophy (MSA), and Alzheimer's disease concurrent with LBD (AD-LBD). These disorders are unified by a pathological hallmark: aberrant misfolding and accumulation of α-synuclein (α-syn). This review delves into the pivotal role of α-syn, the key agent in α-synucleinopathy pathophysiology, and provides a survey of potential therapeutics that target cell-to-cell spread of pathologic α-syn.

View Article and Find Full Text PDF

Prion protein modulation of virus-specific T cell differentiation and function during acute viral infection.

Immunohorizons

January 2025

Center for Virus Research, Chao Family Comprehensive Cancer Center, Department of Molecular Biology and Biochemistry, Charlie Dunlop School of Biological Sciences, University of California, Irvine, Irvine, CA, United States.

The differentiation and functionality of virus-specific T cells during acute viral infections are crucial for establishing long-term protective immunity. While numerous molecular regulators impacting T cell responses have been uncovered, the role of cellular prion proteins (PrPc) remains underexplored. Here, we investigated the impact of PrPc deficiency on the differentiation and function of virus-specific T cells using the lymphocytic choriomeningitis virus (LCMV) Armstrong acute infection model.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!