Efficient and consistent chromosome identification is the foundation for successful cytogenetic studies. Fluorescent in situ hybridization (FISH) has been the most popular technique for chromosome identification in plants. Large insert genomic DNA clones, such as bacterial artificial chromosome (BAC) clones, and repetitive DNA sequences have been the most commonly used DNA probes for FISH. However, most of such traditional probes can only be used to identify a single chromosome or are too polymorphic to consistently identify the same chromosome in the target species. In contrast, FISH using oligonucleotide (oligo)-based probes is highly versatile. In this procedure, a large number of oligos specific to a chromosomal region, to an entire chromosome, or to multiple chromosomes are computationally identified, synthesized in parallel, and labeled as probes. In addition, each oligo probe can be used for thousands of FISH experiments and represents an infinite resource. In this chapter we describe a detailed protocol for amplification and labeling of oligo-based probes, relevant chromosome preparation, and FISH procedures.

Download full-text PDF

Source
http://dx.doi.org/10.1007/978-1-0716-0623-0_4DOI Listing

Publication Analysis

Top Keywords

fluorescent situ
8
situ hybridization
8
chromosome identification
8
oligo-based probes
8
chromosome
7
probes
6
fish
5
hybridization oligonucleotide-based
4
oligonucleotide-based probes
4
probes efficient
4

Similar Publications

CASC8 activates the pentose phosphate pathway to inhibit disulfidptosis in pancreatic ductal adenocarcinoma though the c-Myc-GLUT1 axis.

J Exp Clin Cancer Res

January 2025

Department of Hepato-Biliary-Pancreatic Surgery, General Surgery, Huadong Hospital, Fudan University, Shanghai, 200040, PR China.

Purpose: Glucose starvation induces the accumulation of disulfides and F-actin collapse in cells with high expression of SLC7A11, a phenomenon termed disulfidptosis. This study aimed to confirm the existence of disulfidptosis in pancreatic ductal adenocarcinoma (PDAC) and elucidate the role of Cancer Susceptibility 8 (CASC8) in this process.

Methods: The existence of disulfidptosis in PDAC was assessed using flow cytometry and F-actin staining.

View Article and Find Full Text PDF

Laminin-dystroglycan mediated ferroptosis in hemorrhagic shock and reperfusion induced-cognitive impairment through AMPK/Nrf2.

Free Radic Biol Med

January 2025

Department of Anesthesiology and Perioperative Medicine, the Second Affiliated Hospital of Anhui Medical University, Hefei City, Anhui Province, China; Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei City, Anhui Province, China; Institute of Brain Science and Brain-inspired Research, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China. Electronic address:

Hemorrhagic shock and reperfusion (HSR) is the main cause of death following trauma. Cognitive impairment may persist after successful resuscitation from hemorrhagic shock, but the mechanisms remain elusive. This study demonstrated the presence of ferroptosis in an in vitro model of oxygen-glucose deprivation and reoxygenation (OGD/R) in HT22 neurons, and also in a murine model of HSR using 3-month-old C57BL/6 mice.

View Article and Find Full Text PDF

Identification and regulation of a novel leptin receptor-linked enhancer during zebrafish ventricle regeneration.

Life Sci

January 2025

TaiKang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, China. Electronic address:

Aims: Vertebrates vary greatly in their abilities to regenerate injured hearts. Zebrafish possess a remarkable capacity for cardiac regeneration, making them an excellent model for regeneration research. Recent studies have reported the activation and underlying regulatory mechanisms of leptin b (lepb) and the leptin b-linked enhancer (LEN) in injured hearts.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!