Extrinsic nature of the broad photoluminescence in lead iodide-based Ruddlesden-Popper perovskites.

Nat Commun

Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands.

Published: May 2020

AI Article Synopsis

  • Recent research highlights the importance of two-dimensional metal halide perovskites, particularly Ruddlesden-Popper types, for their potential in light generation and stabilizing their 3D versions.
  • The common belief that broad luminescence in these materials is due to self-trapped excitons from strong carrier-phonon interactions is challenged by new findings.
  • Investigating lead-iodide single crystals reveals that the broad emission originates from in-gap states in the crystal, prompting a reevaluation of the assumptions surrounding luminescence in metal halide perovskites.

Article Abstract

Two-dimensional metal halide perovskites of Ruddlesden-Popper type have recently moved into the centre of attention of perovskite research due to their potential for light generation and for stabilisation of their 3D counterparts. It has become widespread in the field to attribute broad luminescence with a large Stokes shift to self-trapped excitons, forming due to strong carrier-phonon interactions in these compounds. Contrarily, by investigating the behaviour of two types of lead-iodide based single crystals, we here highlight the extrinsic origin of their broad band emission. As shown by below-gap excitation, in-gap states in the crystal bulk are responsible for the broad emission. With this insight, we further the understanding of the emission properties of low-dimensional perovskites and question the generality of the attribution of broad band emission in metal halide perovskite and related compounds to self-trapped excitons.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7214453PMC
http://dx.doi.org/10.1038/s41467-020-15970-xDOI Listing

Publication Analysis

Top Keywords

metal halide
8
self-trapped excitons
8
broad band
8
band emission
8
broad
5
extrinsic nature
4
nature broad
4
broad photoluminescence
4
photoluminescence lead
4
lead iodide-based
4

Similar Publications

Mechanoluminescence from Organic-Inorganic Metal Halide Perovskite Derivative.

Adv Sci (Weinh)

January 2025

Institute of Frontier Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Qingdao, 266237, P. R. China.

Metal halide perovskites and their derivatives are gaining significant attention as photoluminescent materials due to their exceptional light-emitting properties. However, most research has concentrated on electroluminescence and photoluminescence, there remains a substantial gap in the exploration of mechanoluminescence (ML) properties in perovskites, making this field largely uncharted. ML is an ancient and intriguing luminescent phenomenon that occurs when a material is subjected to mechanical forces.

View Article and Find Full Text PDF

Au nanoclusters often demonstrate useful optical properties such as visible/near-infrared photoluminescence in addition to remarkable thermodynamic stability owing to their superatomic behavior. The smallest of the 8e- superatomic Au nanoclusters, Au11, has limited applications due to its lack of luminescence and relatively low stability. In this work, we investigate the introduction of a single Pt dopant to the center of a halide- and triphenylphosphine-ligated Au11 nanocluster, obtaining a cluster with a proposed molecular formula PtAu10(PPh3)7Br3.

View Article and Find Full Text PDF

Superior Multimodal Luminescence in a Stable Single-Host Nanomaterial with Large-Scale Synthesis for High-Level Anti-Counterfeiting and Encryption.

Adv Sci (Weinh)

January 2025

Key Laboratory for High Efficiency Energy Conversion Science and Technology of Henan Province, International Joint Research Laboratory of New Energy Materials and Devices of Henan Province, School of Physics and Electronics, Henan University, Kaifeng, 475004, P. R. China.

Multimode luminescent materials exhibit tunable photon emissions under different excitation or stimuli channels, endowing them high encoding capacity and confidentiality for anti-counterfeiting and encryption. Achieving multimode luminescence into a stable single material presents a promising but remains a challenge. Here, the downshifting/upconversion emissions, color-tuning persistent luminescence (PersL), temperature-dependent multi-color emissions, and hydrochromism are integrated into Er ions doped CsNaYbCl nanocrystals (NCs) by leveraging shallow defect levels and directed energy migration.

View Article and Find Full Text PDF

Ultrahigh Selectivity HS Gas Sensor Based CsPbBr Perovskites via Pb-S Bonding Interaction.

ACS Sens

January 2025

State Key Laboratory of Materials Processing and Die Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology (HUST), No. 1037, Luoyu Road, Wuhan 430074, P. R. China.

High selectivity and sensitivity sensing of HS gas play a decisive role in the early detection of sulfide solid-state battery failure. Herein, we construct the CsPbBr perovskite-based sensor that exhibits outstanding gas-sensing performance to HS at room temperature, including high selectivity, fast response/recovery speed (73.5/275.

View Article and Find Full Text PDF

Metal halide perovskites (MHPs) have emerged as the most promising materials due to superior optoelectronic properties and great applications spanning from photovoltaics to photonics. Absorption spectroscopy provides a broad and deep insight into the carrier dynamics of MHPs, and is a critical complement to fluorescence and scattering spectroscopy. However, absorption spectroscopy is often misunderstood or underestimated, being seen as UV-vis spectroscopy only, which can lead to various misinterpretations.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!