Electrospun metronidazole-loaded nanofibers for vaginal drug delivery.

Drug Dev Ind Pharm

Department of Pharmaceutical Technology, Faculty of Pharmacy, Gazi University, Ankara, Turkey.

Published: June 2020

To develop and characterize innovative vaginal dosage forms for the treatment of bacterial vaginosis (BV). This study is the first comparative evaluation of the metronidazole (MET)-loaded polyvinylpyrrolidone (PVP) nanofiber formulations on BV treatment. Vaginal nanofibers are one of the potential innovative dosage forms for BV treatment because of their flexible, mucoadhesive, and easy application in vaginal application which can be applied by the mucosal route. Blank and MET-loaded PVP solutions were prepared at three different concentrations (10, 12.5, 15%) for produce nanofiber. The suitability of the viscosities, surface tensions, and conductivity values of the solutions used to produce nanofibers for the electrospinning process has been evaluated. Scanning electron microscopy, mucoadhesion, permeability, Fourier transform infrared spectroscopy, differential scanning calorimetry, and drug release tests were performed to reveal the physical, chemical, and pharmaceutical properties of the nanofibers. Mechanical properties, and contact angle of the fibers were also determined. Gel and solution formulations containing MET were prepared for comparative studies. All polymer solutions were found to be suitable for electrospinning process. PVP concentration directly affected nanofiber diameter, mechanical, and mucoadhesion properties of nanofibers. The release profiles of the drug from the nanofibers were similar for all concentration of PVP and release from the fibers was rapid. The permeability coefficient of MET from nanofibers was increased more than gel and solution formulations. Vaginal use of MET-loaded nanofibers has been shown to be a potential drug delivery system for the treatment of BV.

Download full-text PDF

Source
http://dx.doi.org/10.1080/03639045.2020.1767125DOI Listing

Publication Analysis

Top Keywords

nanofibers
8
drug delivery
8
dosage forms
8
forms treatment
8
nanofibers potential
8
electrospinning process
8
properties nanofibers
8
gel solution
8
solution formulations
8
vaginal
5

Similar Publications

Postoperative adhesion around nerves sometimes results in sensory and motor dysfunctions. To prevent these disorders, we have developed an electrospun nanofiber sheet incorporating methylcobalamin (MeCbl), an active form of vitamin B12 with anti-inflammatory and neuroregenerative effects. This study aimed to investigate the neuroprotective effects of MeCbl sheets against postoperative adhesion and to compare the effects of MeCbl sheets with those of porcine small intestinal submucosa (SIS) sheets using a rat sciatic nerve adhesion model.

View Article and Find Full Text PDF

Customized nano-biocatalysts of laccase have been made using nano-structured polyaniline viz. nano-fibers and nano-tubes, as immobilization supports and a simultaneous comparison between them has been made. Laccases are poly-phenol oxidases having tremendous utility concerning wider areas of application especially in the field of organic and drug syntheses.

View Article and Find Full Text PDF

Polyphenols, natural compounds abundant in phenolic structures, have received widespread attention due to their antioxidant, anti-inflammatory, antibacterial, and anticancer properties, making them valuable for biomedical applications. However, the green synthesis of polyphenol-based materials with economical and environmentally friendly strategies is of great significance. In this study, a multifunctional wound dressing was achieved by introducing polyphenol-based materials of copper phosphate-tannic acid with a flower-like structure (Cu-TA NFs), which show the reactive oxygen species scavenging performance.

View Article and Find Full Text PDF

Highly Elastic Spongelike Hydrogels for Impedance-Based Multimodal Sensing.

ACS Nano

January 2025

School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Republic of Singapore.

Hydrogel-based sensors have been widely studied for perceiving the environment. However, the simplest type of resistive sensors still lacks sensitivity to localized strain and other extractable data. Enhancing their sensitivity and expanding their functionality to perceive multiple stimuli simultaneously are highly beneficial yet require optimal material design and proper testing methods.

View Article and Find Full Text PDF

Since the invention and commercialization of poly(-phenylene benzobisoxazole) (PBO) fibers, numerous breakthroughs in applications have been realized both in the military and aerospace industries, attributed to its superb properties. Particularly, PBO nanofibers (PNFs) not only retain the high performance of PBO fiber but also exhibit impressive nanofeatures and desirable processability, which have been extensively applied in extreme scenarios. However, no review has yet comprehensively summarized the preparation, applications, and prospective challenges of PNFs to the best of our knowledge.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!