Omega-3 polyunsaturated fatty acid (ω-3 PUFA) supplements for chemoprevention of different types of cancer including lung cancer has been investigated in recent years. ω-3 PUFAs are considered immunonutrients, commonly used in the nutritional therapy of cancer patients. ω-3 PUFAs play essential roles in cell signaling and in cell structure and fluidity of membranes. They participate in the resolution of inflammation and have anti-inflammatory effects. Lung cancer patients suffer complications, such as anorexia-cachexia syndrome, pain and depression. The European Society for Clinical Nutrition and Metabolism (ESPEN) 2017 guidelines for cancer patients only discuss the use of ω-3 PUFAs for cancer-cachexia treatment, leaving aside other cancer-related complications that could potentially be managed by ω-3 PUFAs. This review aims to elucidate whether the effects of ω-3 PUFAs in lung cancer is supplementary, pharmacological or both. In addition, clinical studies, evidence in cell lines and animal models suggest how ω-3 PUFAs induce anticancer effects. ω-3 PUFAs and their metabolites are suggested to modulate pivotal pathways underlying the progression or complications of lung cancer, indicating that this is a promising field to be explored. Further investigation is still required to analyze the benefits of ω-3 PUFAs as supplementation or pharmacological treatment in lung cancer.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/01635581.2020.1761408 | DOI Listing |
J Food Sci Technol
April 2016
Department of Chemical Technology, University College of Science & Technology, University of Calcutta, 92, A.P.C. Road, Kolkata, 700 009 India.
Palm stearin fractionate (PSF), obtained from palm stearin by further fractionation with solvents and n-3 polyunsaturated fatty acids (n-3 PUFA) rich fish oil (FO) were subjected to interesterification at 1:1, 1:2, 1:3, 2:1 and 3:1 substrate molar ratio and catalyzed by lipase from Thermomyces lanuginosa for obtaining a product with triacylglycerol (TAG) structure similar to that of human milk fat (HMF). The parameters (molar ratio and time) of the interesterification reaction were standardized. The temperature of 60 °C and enzyme concentration of 10 % (w/w) were kept fixed as these parameters were previously optimized.
View Article and Find Full Text PDFBiomaterials
March 2013
Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei University, Wuhan, Hubei 430062, China.
Multifunctional colloidal nanoparticles which exhibit fluorescence, superparamagnetism, and thermosensitivity are produced by two step seed emulsifier-free emulsion polymerization in the presence of oleic acid (OA) and sodium undecylenate (NaUA) modified Fe(3)O(4) nanoparticles. In the first step, St and NIPAM polymerize the NaUA on the surface of Fe(3)O(4) nanoparticles to form Fe(3)O(4)/poly(St-NIPAM) nanoparticles which act as seeds for the polymerization of Eu(AA)(3)Phen with the remaining St and NIPAM in the second step to form an outer fluorescent layer. The core-shell composite nanoparticles show reversible dimensional changes in response to external temperature stimuli.
View Article and Find Full Text PDFJ Physiol Pharmacol
December 2007
Department of Clinical Biochemistry, Jagiellonian University, Krakow, Poland.
DNA methylation is one of the important mechanisms regulating gene expression. Since beta-carotene (BC) was shown to have pro-chemotactic activity and stimulates expression of pro-angiogenic genes, this study was undertaken to define the possible changes in DNA methylation in endothelial cell and its progenitors in the presence of BC. The culture medium for human umbilical vein endothelial cells (HUVEC) and endothelial progenitor cells (EPC) was supplemented with BC (1 - 10 microM) with the presence of arachidonic acid (AA) (3 microM).
View Article and Find Full Text PDFAm J Physiol Heart Circ Physiol
March 2008
Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI 53226, USA.
Arachidonic acid (AA) causes endothelium-dependent smooth muscle hyperpolarizations and relaxations that are mediated by a 15-lipoxygenase-I (15-LO-I) metabolite, 11,12,15-trihydroxyeicosatrienoic acid (11,12,15-THETA). We propose that AA is metabolized sequentially by 15-LO-I and hydroperoxide isomerase to an unidentified hydroxyepoxyeicosatrienoic acid (HEETA), which is hydrolyzed by a soluble epoxide hydrolase (sEH) to 11,12,15-THETA. After incubation of aorta with 14C-labeled AA, metabolites were extracted and the HEETAs were resolved by performing HPLC.
View Article and Find Full Text PDFAm J Physiol Heart Circ Physiol
February 2008
Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI 53226, USA.
Rabbit 15-lipoxygenase-1 (15-LO-1) oxygenates arachidonic acid (AA) into 15-hydroperoxyeicosatetraenoic acid, which is then converted to the vasodilatory 15-hydroxy-11,12-epoxyeicosatrienoic acid (HEETA) and 11,12,15-trihydroxyeicosatrienoic acid (THETA). We studied the age-dependent expression of the 15-LO-1 in rabbit aorta and its effects on the synthesis of THETA, HEETA, and vasoactivity. Aortas of 1-wk-old rabbits express greater amounts of 15-LO-1 mRNA and protein compared with aortas of 4-, 8-, or 16-wk-old rabbits.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!