We reported the fabrication of several monodispersed poly(2-vinyl pyridine)-poly(-isopropylacrylamide) (P2VP-PNIPAM) microgels including the P2VP core (non-cross-linked) and PNIPAM (cross-linked) shell by mature emulsion polymerization. The fast escape behavior (diffusion process) of linear P2VP chains through a porous PNIPAM layer was investigated by a pH jump stopped-flow apparatus. The time-dependent dynamic traces (corresponding to the scattered light intensity) decreased at the initial timescale of several seconds and then reached an apparent equilibrium, confirming the efficient escape of P2VP chains from microgels. Compared with the previously reported literature, such an accelerated escape process resulted from the sharply increased internal charge repulsive force caused by the protonation of P2VP moieties under acidic conditions. The obtained characteristic relaxation times by single exponential fitting of these kinetic traces were dependent on the final pH values, equilibrium temperatures, shell thickness (path length), and cross-linking density (mesh size). We believe that this work can provide an efficient way to investigate hindered diffusion, especially the initial rapid diffusion stage. Not only that, the proposed model can also provide theoretical guidance to some practical applications, such as membrane separation and the exocytosis phenomenon of intracellular proteins or macromolecular substances.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.langmuir.0c00738DOI Listing

Publication Analysis

Top Keywords

escape behavior
8
path length
8
p2vp chains
8
stopped-flow dynamics
4
dynamics study
4
escape
4
study escape
4
behavior polyelectrolyte
4
polyelectrolyte macromolecules
4
macromolecules microgels
4

Similar Publications

Unlabelled: Engineered three-dimensional (3D) tissue culture platforms are useful for reproducing and elucidating complex in vivo biological phenomena. Spheroids, 3D aggregates of living cells, are produced based on physicochemical or microfabrication technologies and are commonly used even in cancer pathology research. However, conventional methods have difficulties in constructing 3D structures depending on the cell types, and require specialized techniques/lab know-how to reproducibly control the spheroid size and shape.

View Article and Find Full Text PDF

Background: High-throughput behavioral analysis is important for drug discovery, toxicological studies, and the modeling of neurological disorders such as autism and epilepsy. Zebrafish embryos and larvae are ideal for such applications because they are spawned in large clutches, develop rapidly, feature a relatively simple nervous system, and have orthologs to many human disease genes. However, existing software for video-based behavioral analysis can be incompatible with recordings that contain dynamic backgrounds or foreign objects, lack support for multiwell formats, require expensive hardware, and/or demand considerable programming expertise.

View Article and Find Full Text PDF

To ensure their survival, animals must be able to respond adaptively to threats within their environment. However, the precise neural circuit mechanisms that underlie flexible defensive behaviors remain poorly understood. Using neuronal manipulations, machine learning-based behavioral detection, electron microscopy (EM) connectomics and calcium imaging in Drosophila larvae, we map second-order interneurons that are differentially involved in the competition between defensive actions in response to competing aversive cues.

View Article and Find Full Text PDF

Histone Modifications and DNA Methylation in Psoriasis: A Cellular Perspective.

Clin Rev Allergy Immunol

January 2025

Department of Dermatology and Venereology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China.

In recent years, epigenetic modifications have attracted significant attention due to their unique regulatory mechanisms and profound biological implications. Acting as a bridge between environmental stimuli and changes in gene activity, they reshape gene expression patterns, providing organisms with regulatory mechanisms to respond to environmental changes. A growing body of evidence indicates that epigenetic regulation plays a crucial role in the pathogenesis and progression of psoriasis.

View Article and Find Full Text PDF

MCT1 lactate transporter blockade re-invigorates anti-tumor immunity through metabolic rewiring of dendritic cells in melanoma.

Nat Commun

January 2025

Institute for Advanced Biosciences, Team: Epigenetics, Immunity, Metabolism, Cell Signaling & Cancer, Inserm U 1209, CNRS UMR 5309, Univ. Grenoble Alpes, Grenoble, France.

Dendritic cells (DC) are key players in antitumor immune responses. Tumors exploit their plasticity to escape immune control; their aberrant surface carbohydrate patterns (e.g.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!