AC Corrosion of Carbon Steel under Cathodic Protection Condition: Assessment, Criteria and Mechanism. A Review.

Materials (Basel)

Dipartimento di Chimica, Materiali e Ingegneria Chimica "Giulio Natta", Politecnico di Milano, Milan, Italy.

Published: May 2020

Cathodic protection (CP), in combination with an insulating coating, is a preventative system to control corrosion of buried carbon steel pipes. The corrosion protection of coating defects is achieved by means of a cathodic polarization below the protection potential, namely -0.85 V vs. CSE (CSE, copper-copper sulfate reference electrode) for carbon steel in aerated soil. The presence of alternating current (AC) interference, induced by high-voltage power lines (HVPL) or AC-electrified railways, may represent a corrosion threat for coated carbon steel structures, although the potential protection criterion is matched. Nowadays, the protection criteria in the presence of AC, as well as AC corrosion mechanisms in CP condition, are still controversial and discussed. This paper deals with a narrative literature review, which includes selected journal articles, conference proceedings and grey literature, on the assessment, acceptable criteria and corrosion mechanism of carbon steel structures in CP condition with AC interference. The study shows that the assessment of AC corrosion likelihood should be based on the measurement of AC and DC (direct current) related parameters, namely AC voltage, AC and DC densities and potential measurements. Threshold values of the mentioned parameters are discussed. Overprotection ( < -1.2 V vs. CSE) is the most dangerous condition in the presence of AC: the combination of strong alkalization close to the coating defect due to the high CP current density and the action of AC interference provokes localized corrosion of carbon steel.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7254396PMC
http://dx.doi.org/10.3390/ma13092158DOI Listing

Publication Analysis

Top Keywords

carbon steel
24
corrosion
8
corrosion carbon
8
cathodic protection
8
steel structures
8
steel
6
protection
6
carbon
5
steel cathodic
4
condition
4

Similar Publications

Achieving a net-zero emissions economy requires significant decarbonization of the transportation sector, which depends on the development of highly efficient electrocatalysts. Electrolytic water splitting is a promising approach to this end, with Ni-Mo alloys emerging as strong candidates for hydrogen production catalysts. This study investigates the electrodeposition of Ni and Ni-Mo nanostructured alloys with high molybdenum content onto low-carbon steel cathodes using a novel alkaline green lactate bath.

View Article and Find Full Text PDF

Atmospheric corrosion of carbon and galvanized steel under high rainfall conditions.

Heliyon

January 2025

Grupo de Investigación en Energías Renovables y Meteorología-GIERMET, Universidad Tecnológica del Chocó, Cra 22 No 18b -10, Quibdó, Colombia.

The corrosion rates of carbon steel and galvanized steel according to the ISO 9223 standard, the effect of pollutant contamination and atmospheric aggressiveness under high rainfall conditions in the Chocó department were studied. Carbon and galvanized steel samples, chloride, and sulfur collectors were exposed in three atmospheric stations in three strategic positions covering the Colombian Pacific: Quibdó, Andagoya and Bahía Solano, for different exposure periods (up to 18 months). The structural-micro characterization of corrosion products was evaluated via X-ray diffraction (XRD), Raman spectroscopy and scanning electron microscopy coupled with energy-dispersive X-ray spectroscopy SEM-EDS.

View Article and Find Full Text PDF

Scaling of steel surfaces, prevalent in various industrial applications, results in significant operational inefficiencies and maintenance costs. Inspired by the natural hydrophobicity of springtail (Collembola) skin, which employs micro- and nanostructures to repel water, we investigate the application of silicone nanofilaments (SNFs) as a coating on steel surfaces to mitigate scaling. Silicone nanofilaments, previously successful on polymers, textiles, and glass, are explored for their hydrophobic properties and stability on steel.

View Article and Find Full Text PDF

Distinguishing abiotic corrosion from two types of microbiologically influenced corrosion (MIC) using a new electrochemical biofilm/MIC test kit.

J Environ Manage

January 2025

Department of Chemical & Biomolecular Engineering, Institute for Corrosion and Multiphase Technology, Ohio University, Athens, 45701, USA; Department of Biological Sciences, Molecular & Cellular Biology Program, Ohio University, Athens, OH, 45701, USA. Electronic address:

Biofilms can cause biofouling, water quality deterioration, and transmission of infectious diseases. They are also responsible for microbiologically influenced corrosion (MIC) which can cause leaks, resulting in environmental disasters. A new disposable biofilm/MIC test kit was demonstrated to distinguish abiotic corrosion of carbon steel from MIC.

View Article and Find Full Text PDF

Polymer-based nanocomposite coatings that are enhanced with nanoparticles have gained recognition as effective materials for antibacterial purposes, providing improved durability and biocidal effectiveness. This research introduces an innovative chitosan-based polymer nanocomposite, enhanced with titanium oxide nanopowders and carbon quantum dots. The material was synthesized via the sol-gel process and applied to 316L stainless steel through dip-coating.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!