Seasonal cycles of phytoplankton biomass and primary production in a tropical temporarily open-closed estuarine lagoon - The effect of an extreme climatic event.

Sci Total Environ

Department of Biology, University of Cádiz, Campus of International Excellence of the Sea (CEIMAR), Polígono Rio San Pedro s/n, 11510 Puerto Real, Cádiz, Spain; Instituto Universitario de Investigación Marina (INMAR), University of Cádiz, Campus of International Excellence of the Sea (CEIMAR), Polígono Rio San Pedro s/n, 11510 Puerto Real, Cádiz, Spain.. Electronic address:

Published: June 2020

Temporarily open-closed estuaries and estuarine lagoons are among the most complex aquatic ecosystems, prone to undergo rapid changes in response to global change and other anthropogenic impacts. Nonetheless, studies on the factors that control annual cycles of phytoplanktonic biomass and primary production in such systems, especially tropical ones, are still scarce. Even less information exists on the effect increasingly frequent extreme climatic events (ECE) might have on their dynamics. For this purpose, we monitored the changes in ecological conditions in the Los Micos estuarine lagoon (Honduras) by sampling monthly during an annual cycle that included several changes in the lagoon's mouth phase and attempted to understand which environmental factors affect phytoplanktonic biomass and primary production. We also evaluated the impact of, and recovery from, a tropical storm ECE. Annual mean net production (Pn), integrated for the euphotic zone, (4.3 ± 2.8 gC m d) and Chlorophyll a (27.1 ± 19.1 mg m) values in Los Micos place it as one of the more productive estuaries worldwide. The physico-chemical characteristics of the lagoon clearly depended on mouth phase; however, the values of Chla and Pn did not show significant differences between the open and closed phases. The application of distance-based multivariate linear models did not show any clear dominant model being able to explain the observed Chla and Pn patterns. The most parsimonious models included among others, salinity, particulate organic carbon and PO, which suggests that primary production is controlled by multiple factors. During the ECE, about 19% of DIN, 91% of DSi and PO, 60% of particulate organic carbon and nitrogen, and 86% of Chla were exported to the sea, greatly reducing Pn. However, Chla and Pn values recovered to pre-storm levels within 30 days, indicating that these biological variables are highly resilient in Los Micos Lagoon.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2020.138014DOI Listing

Publication Analysis

Top Keywords

primary production
16
biomass primary
12
los micos
12
temporarily open-closed
8
estuarine lagoon
8
extreme climatic
8
phytoplanktonic biomass
8
mouth phase
8
particulate organic
8
organic carbon
8

Similar Publications

Behavioral and mental health (BMH) issues are increasing in adolescents as shortages of primary care and BMH providers are also rising. The healthcare burden has fallen especially hard on primary care providers (PCPs), who are showing increasing signs of burnout and making plans to reduce their work hours or leave the profession altogether. These factors impede their ability to be the first line of defense in providing emotional support to children and families.

View Article and Find Full Text PDF

Development of lateral flow immunochromatographic assay with Anti-Pythium insidiosum antibodies for point-of-care testing of vascular pythiosis.

Sci Rep

January 2025

Center of Excellence for Antimicrobial Resistance and Stewardship, Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand.

The pathogenic oomycete Pythium insidiosum causes a fatal infectious illness known as pythiosis, impacting humans and certain animals in numerous countries in the tropics and subtropics. Delayed diagnosis is a primary factor contributing to the heightened morbidity and mortality associated with the disease. Several new serodiagnostic methods have been developed to improve the identification of pythiosis.

View Article and Find Full Text PDF

Selenium, an essential trace mineral for health, has seen a rise in clinical trials over the past nearly 5 decades. Our aim here is to provide a comprehensive and concise overview of selenium clinical trials from 1976 to 2023. Overall, the evolution of selenium clinical trials over 48 years has advanced through phases of emergence, prosperity, and either stability or transition.

View Article and Find Full Text PDF

The sugar transporter proteins in plants: An elaborate and widespread regulation network-A review.

Int J Biol Macromol

January 2025

Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou 730000, China; Yantai Zhongke Research Institute of Advanced Materials and Green Chemical Engineering, Yantai 262306, China; Qingdao Center of Resource Chemistry & New Materials, Qingdao 266100, China. Electronic address:

In higher plants, sugars are the primary products of photosynthesis, where in CO is converted into organic carbon within the mesophyll cells of leaves. These sugars serve as a critical source of carbon skeletons for the biosynthesis of essential cellular compounds, energy production, and as osmotic and signaling molecules. Plant sugar transporter proteins play a key role in facilitating the long-distance translocation of sugars from source to sink organs, thereby controlling their distribution and accumulation across the plant.

View Article and Find Full Text PDF

Eco-friendly synthesis of CuO/g-C₃N₄/Fe₃O₄ nanocomposites for efficient magnetic micro-solid phase extraction (M-μ-SPE) of trace cadmium from food and water samples.

Food Chem

December 2024

Department of Chemistry, Faculty of Sciences, Erciyes University, Kayseri, Turkiye; Technology Research and Application Center (TAUM), Erciyes University, Kayseri, Turkiye; Turkish Academy of Sciences (TUBA), Cankaya, Ankara, Turkiye; Khazar University Nano BioAnalytical Chemistry Center (NBAC), Mahsati Str 41, AZ-1096 Baku, Azerbaijan.

In this study, a green synthesis method for synthesizing a novel nanocomposite (CuO/g-C₃N₄/Fe₃O₄) utilizing renewable dragon fruit peels as the primary raw material was developed. Hydrothermal and thermal decomposition techniques were used for nanocomposite synthesis. This nanocomposite was subsequently employed for the separation and preconcentration of Cd(II) from various environments, including food and water samples.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!