Tuberculosis is the main cause of death from a single infectious agent. Globally, according to the World Health Organization, in 2018, there were an estimated 1.2 million tuberculosis deaths. Moreover, there is a continuous appearance of drug-resistant strains. Thus, development of new antituberculosis medicines should receive high priority. Plant-derived natural products are promising candidates for this purpose. We therefore screened alkaloid extracts obtained from the root and stem barks of the Mexican Apocynaceae species and , as well as the pure alkaloids ibogaine, voacangine, and voacamine, tested for activity against H37Rv and cytotoxicity to mammalian Vero cells using the resazurin microtiter and the MTT assays, respectively. The extracts were analyzed by GC-MS and HPLC-UV. root bark alkaloid extract showed the highest activity against (MIC = 7.8 µg/mL) of the four extracts tested. HPLC suggested that voacangine and voacamine were the major components. The latter was isolated by column chromatography, and its chemical structure was elucidated by H and C NMR, and MS. Unambiguous assignation was performed by HSQC, HMBC, and NOESY experiments. Voacamine is a dimeric bis-indole-type alkaloid and is 15 times more potent than the monomeric ibogan-type alkaloids ibogaine and voacangine (MIC = 15.6, 250.0, and 250.0 µg/mL, respectively). However, all of these compounds showed cytotoxicity to Vero cells, with a poor selectivity index of 1.00, 0.16, and 1.42, respectively. This is the first report of voacamine activity against .
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1055/a-1157-1732 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!