Titanium dioxide is a widely used photocatalytic material possessing such advantages as safety, low cost, and high reactivity under the ultraviolet light illumination. However, its applicability in sunlight is limited due to the wide band gap and, as a consequence, the low quantum yield. Doping of titanium dioxide with metal or non-metal atoms and creating heterojunctions based on it are some of the most efficient ways to overcome this drawback. Herein we propose a new facile way of synthesis of nitrogen-doped TiO/MoO and TiO/WO microsphere-shaped nanocomposite photocatalysts, combining the advantages of these two methods. It is revealed that such structures are not only photo-active when exposed to visible light, but can also accumulate a photoinduced charge, thus allowing the catalytic reaction to be prolonged for a long time after the illumination is switched off (up to 48 h). With the help of EPR spectroscopy, paramagnetic defects in the samples were determined. The obtained results show good application prospects of the visible-light-driven TiO-based nanoheterostructured microspheres in the environmental purification.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1088/1361-6528/ab91f1 | DOI Listing |
Nanotechnology
August 2020
Physics Department of Lomonosov Moscow State University, Moscow 119991, Russia. National Research Center 'Kurchatov Institute', Moscow 123182, Russia. Moscow Institute of Physics and Technology, 141701, Dolgoprudny, Moscow Region, Russia.
Titanium dioxide is a widely used photocatalytic material possessing such advantages as safety, low cost, and high reactivity under the ultraviolet light illumination. However, its applicability in sunlight is limited due to the wide band gap and, as a consequence, the low quantum yield. Doping of titanium dioxide with metal or non-metal atoms and creating heterojunctions based on it are some of the most efficient ways to overcome this drawback.
View Article and Find Full Text PDFACS Appl Mater Interfaces
May 2018
Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences , Ningbo 315201 , PR China.
Multishell, stable, porous metal-oxide microspheres (Ni-Co oxides, CoO and NiO) have been synthesized through the amorphous coordination polymer-based self-templated method. Both oxides of Ni and Co show poor selectivity to xylene, but the composite phase has substantial selectivity (e.g.
View Article and Find Full Text PDFJ Colloid Interface Sci
August 2018
College of Information and Control Engineering, China University of Petroleum (East China), Qingdao 266580, China.
In this paper, we fabricated a high-performance ethanol sensor using layer-by-layer self-assembled urchin-like alpha-iron oxide (α-FeO) hollow microspheres/molybdenum disulphide (MoS) nanosheets heterostructure as sensitive materials. The nanostructural, morphological, and compositional properties of the as-prepared α-FeO/MoS heterostructure were characterized by X-ray diffraction (XRD), energy dispersive spectrometer (EDS), scanning electron microscopy (SEM), transmission electron microscope (TEM) and X-ray photoelectron spectroscopy (XPS), which confirmed its successful preparation and rationality. The α-FeO/MoS nanocomposite sensor shows good selectivity, excellent reproducibility, fast response/recovery time and low detection limit towards ethanol gas at room temperature, which is superior to the single component of α-FeO hollow microspheres and MoS nanosheets.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!