Ancient biomass is the main source for petrochemicals including plastics, which are inherently difficult to be degraded, increasingly polluting the earth's ecosystem including our oceans. To reduce the consumption by substituting or even replacing most of the petrochemicals with degradable and renewable materials is inevitable and urgent for a sustainable future. We report here a unique strategy to directly convert biomass DNA, at a large scale and with low cost, to diverse materials including gels, membranes, and plastics without breaking down DNA first into building blocks and without polymer syntheses. With excellent and sometimes unexpected, useful properties, we applied these biomass DNA materials for versatile applications for drug delivery, unusual adhesion, multifunctional composites, patterning, and everyday plastic objects. We also achieved cell-free protein production that had not been possible by petrochemical-based products. We expect our biomass DNA conversion approach to be adaptable to other biomass molecules including biomass proteins. We envision a promising and exciting era coming where biomass may replace petrochemicals for most if not all petro-based products.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jacs.0c02438 | DOI Listing |
Sci Rep
December 2024
South China Sea Fisheries Research Institute, Chinese Academy of Fisheries Sciences, Guangzhou, 510300, China.
Naunyn Schmiedebergs Arch Pharmacol
December 2024
Research Center for Pharmaceutical Ingredients and Traditional Medicine, National Research and Innovation Agency (BRIN), Cibinong, Bogor, 16911, West Java, Indonesia.
Quercetin is abundant in plants and has notable pharmacological properties for skin health. This review aims to comprehensively evaluate the effects of quercetin on skin-related issues, adhering to the PRISMA guidelines and analyzing studies from ScienceDirect, Web of Science, Scopus, and PubMed. Of the 1,398 studies identified, 65 studies met the criteria for meta-analysis.
View Article and Find Full Text PDFPlant Physiol Biochem
December 2024
Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China; Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Chengdu, 611130, Sichuan, China; State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Chengdu, 611130, Sichuan, China. Electronic address:
Phosphorus (Pi) is an essential nutrient for plants to sustain normal life processes. In this study, we found that the ZmPHO1 proteins had similar molecular weights and the same conserved domain. Phylogenetic and cis-acting element analysis showed that ZmPHO1s were divided into 4 subgroups, in which ZmPHO1;2a and ZmPHO1;2b were closely phylogenetic with OsPHO1;2b, and the promoter region of ZmPHO1s contained abundant abiotic stress-related elements.
View Article and Find Full Text PDFBiosystems
December 2024
Departamento de Estado Sólido, Instituto de Física, Universidad Nacional Autónoma de México, Circuito de la Investigación Científica, Ciudad Universitaria, Ciudad de México, 04510, México.
A prebiotic model, based in the framework of thermodynamic efficiency loss from small dissipative eukaryote organisms [1-3], is developed to describe the maximum possible concentration of solar power to be dissipated on topological circular molecules structures encapsulated in lipid-walled vacuoles, which floated in the Archean oceans. By considering previously, the analysis of 71 species examined by covering 18 orders of mass magnitude from the Megapteranovaeangliae to Saccharomyces cerevisiae[2], suggest that in molecular structures of smaller masses than any living being known nowadays, the power dissipation must be directly proportional to the power of the photons of solar origin that impinge them to give rise to the formation of more complex self-assembled molecular structures at the prebiotic stage by a quantum mechanics model of resonant photon wavelength excitation. The analysis of 12 circular molecules (encapsulated in lipid-walled vacuoles) relevant to the evolution of life on planet Earth such as the five nucleobases, and some aromatic molecules as pyrimidine, porphyrin, chlorin, coumarin, xanthine, etc.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
State Key Laboratory of Resource Insects, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China; Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing 400715, China; Yibin Academy of Southwest University, Southwest University, Chongqing 400715, China. Electronic address:
Endoreplication is particularly important in the context of silk protein synthesis within the silk gland cells of silkworms. Our previous research indicated that the BmE2F1 enhances the silk yield of silkworm cocoons, but the underlying molecular mechanism remains elusive. In this study, we employed RNA-sequencing to dissect the transcriptional profiles of silk glands in the wild-type Dazao silkworm strain and the overexpression (OE) silkworm strain with specific overexpression of the BmE2F1 gene in silk glands.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!