A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

The Appearance of the Warburg Effect in the Developing Avian Eye Characterized In Ovo: How Neurogenesis Can Remodel Neuroenergetics. | LitMetric

Purpose: The avian eye is an established model for exploring mechanisms that coordinate morphogenesis and metabolism during embryonic development. Less is known, however, about trafficking of bioenergetic and metabolic signaling molecules that are involved in retinal neurogenesis.

Methods: Here we tested whether the known 3-day delayed neurogenesis occurring in the pigeon compared with the chick was associated with a deferred reshaping of eye metabolism in vivo. Developmental metabolic remodeling was explored using 1H-magnetic resonance spectroscopy of the whole eye and vitreous body, in ovo, in parallel with biochemical and molecular analyses of retinal, vitreous, and lens extracts from bird embryos.

Results: Cross-species comparisons enabled us to show that a major glycolytic switch in the retina is related to neurogenesis rather than to eye growth. We further show that the temporal emergence of an interlocking regulatory cascade controlling retinal oxidative phosphorylation and glycolysis results in the exchange of lactate and citrate between the retina and vitreous.

Conclusions: Our results point to the vitreous as a reservoir and buffer of energy metabolites that provides trophic support to oxidative neurons, such as retinal ganglion cells, in early development. Through its control of key glycolytic regulatory enzymes, citrate, exchanged between extracellular and intracellular compartments between the retina and vitreous, is a key metabolite in the initiation of a glycolytic switch.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7405834PMC
http://dx.doi.org/10.1167/iovs.61.5.3DOI Listing

Publication Analysis

Top Keywords

avian eye
8
glycolytic switch
8
eye
5
appearance warburg
4
warburg developing
4
developing avian
4
eye characterized
4
characterized ovo
4
ovo neurogenesis
4
neurogenesis remodel
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!