Edaphic (i.e. soil dwelling) microarthropods play crucial roles in soil ecosystem services. Fire is a widespread form of disturbance with severe effects on soil invertebrates. Research on the effects of fire on soil arthropods, however, has been mostly focused on surface-active species. Information on the effects of fire on strictly edaphic invertebrates is limited. Thanks to their variable degree of specialization to the edaphic life, soil microarthropods can be used to evaluate soil quality and how it is affected by disturbance. We used an index of soil biological quality based on microarthropods (QBS-ar) to assess the effects of wildfire in three habitats (a natural beechwood, a grassland and a conifer reforestation) in a burnt upland plain in Central Italy, one year after the fire event. Fire affected significantly soil biology quality. In all habitats, burnt soils had a biological quality about 1.4 lower than the respective unburnt soils. Sampling period did not affect QBS-ar values. QBS-ar values varied among habitat types, being highest in the beechwood, lowest in the pinewood, and intermediate in the grassland. These findings indicate that the QBS-ar approach can be profitably used to evaluate the impact of fire on soil biology quality and stress the poor performance of planted conifers in terms of soil quality.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jenvman.2020.110624 | DOI Listing |
Sci Total Environ
January 2025
University of Kansas, Kansas Biological Survey, 2101 Constant Avenue, Takeru Higuchi Hall, Lawrence, KS 66047, USA; University of Kansas, Ecology & Evolutionary Biology, 1200 Sunnyside Avenue Haworth Hall, Lawrence, KS 66045, USA.
Forty percent of terrestrial ecosystems require recurrent fires driven by feedbacks between fire and plant fuels. The accumulation of fine fuels in these ecosystems play a key role in fire intensity, which alters soil nutrients and shapes soil microbial and plant community responses to fire. Changes to post-fire plant fuel production are well known to feed back to future fires, but post-fire decomposition of new fuels is poorly understood.
View Article and Find Full Text PDFNat Commun
January 2025
Department of Mechanical Engineering, Advanced Materials and Manufacturing Process Institute (AMMPI), University of North Texas, Denton, TX, USA.
Wood has complex composition and structure, which make it difficult to achieve consistent and controllable treatment. A self-flowing process presented for the chemical treatment of wood is inspired by liquid transportation in trees during photosynthesis and tree growth, whereby liquid in the soil is brought through the natural vessels and/or fiber tracheids. In this process, wood lumbers are placed in a tank containing treatment chemicals such as preservatives, fire retardants, or reactive agents.
View Article and Find Full Text PDFNew Phytol
January 2025
Laboratorio Nacional de Ciencias de la Sostenibilidad, Instituto de Ecología, Universidad Nacional Autónoma de México, Tercer Circuito s/n de Ciudad Universitaria, Ciudad de México, 04510, Mexico.
Along their lengths, stems experience different functional demands. Because bark and wood traits are usually studied at single points on stems, it remains unclear how carbon allocation changes along tip-to-base trajectories across species. We examined bark vs wood allocation by measuring cross-sectional areas of outer and inner bark (OB and IB), IB regions (secondary phloem, cortex, and phelloderm), and wood from stem tips to bases of 35 woody angiosperm species of diverse phylogenetic lineages, climates, fire regimes, and bark morphologies.
View Article and Find Full Text PDFEcol Lett
January 2025
National Forestry and Grassland Administration Engineering Research Centre for Southwest Forest and Grassland Fire Ecological Prevention, College of Forestry, Sichuan Agricultural University, Chengdu, China.
Leaf dry matter content (LDMC) is an important determinant of plant flammability. Investigating global patterns of LDMC could provide insights into worldwide plant flammability patterns, informing wildfire management. We characterised global patterns of LDMC across 4074 species from 216 families, revealing that phylogenetic and environmental constraints influence LDMC.
View Article and Find Full Text PDFEnviron Sci Technol
January 2025
State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
Peatlands store one-third of the world's soil organic carbon. Globally increased fires altered peat soil organic matter chemistry, yet the redox property and molecular dynamics of peat-dissolved organic matter (PDOM) during fires remain poorly characterized, limiting our understanding of postfire biogeochemical processes. Clarifying these dynamic changes is essential for effective peatland fire management.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!