Ethanol from rice byproduct using amylases secreted by Rhizopus microsporus var. oligosporus. Enzyme partial purification and characterization.

J Environ Manage

Laboratório de Biotecnologia Industrial - Instituto de Pesquisa em Bioenergia (IPBEN), Departamento de Biotecnologia, Universidade Estadual Paulista "Júlio de Mesquita Filho", Campus Assis, Avenida Dom Antônio, 2100, 19806-900, Assis, SP, Brazil.

Published: July 2020

A three-stage bioethanol bioprocess was developed. Firstly, amylases were obtained from Rhizopus microsporus var. oligosporus using wheat bran in solid-state fermentation. Secondly, amylases hydrolyzed a rice byproduct to make a glucose-rich solution, and this sugar was finally metabolized by Saccharomyces cerevisiae to produce bioethanol. Besides, the secreted enzymes were also partially purified and characterized. The amylase activity (AA) in the crude extract was 358 U/g substrate, and the partially purified enzyme showed the best activity in the 4.0-5.5 pH range. A wide pH stability range (3.5-8.5) was confirmed. The amylase was thermostable up to 60 °C. The ion Mn (10 mM) improved by 60% the AA. There was a 54.9% yield in the conversion of rice residues into reducing sugars in 10 h. The glucose-rich solution was undergone fermentation by S. cerevisiae and showed high ethanol efficiency, 95.8% of the theoretical value. These results suggested a promising technology for bioethanol production.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jenvman.2020.110591DOI Listing

Publication Analysis

Top Keywords

rice byproduct
8
rhizopus microsporus
8
microsporus var
8
var oligosporus
8
glucose-rich solution
8
partially purified
8
ethanol rice
4
byproduct amylases
4
amylases secreted
4
secreted rhizopus
4

Similar Publications

Improper storage methods cause food resources to be wasted, and the development of multifunctional intelligent packaging can realize freshness monitoring and extend the shelf life. In this study, an intelligent alizarin/thymol-loaded polycaprolactone/gelatin/zein nanofibrous film was prepared and achieved the dual functions of pH-responsive and antibacterial properties. The film was fabricated using electrospun technology and characterized by SEM, FT-IR, WCA, TGA, DSC, and mechanical property tests, which had good antioxidant properties (81.

View Article and Find Full Text PDF

Dynamic impact of polyethylene terephthalate nanoplastics on antibiotic resistance and microplastics degradation genes in the rhizosphere of Oryza sativa L.

J Hazard Mater

January 2025

Guangxi Key Laboratory of Environmental Processes and Remediation in Ecologically Fragile Regions, Guangxi Normal University, Guilin 541004, China; Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin 541004, China; College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China. Electronic address:

This study examined the effects of polyethylene terephthalate (PET) nanoplastics on the rhizosphere of Oryza sativa L., focusing on dynamic changes and interactions among microbial communities, antibiotic resistance genes (ARGs) and microplastic degradation genes (MDGs). PET exposure altered the structure and function of soil microbial, enabling specific microbial groups to thrive in polluted environments.

View Article and Find Full Text PDF

A fundamental study has been conducted on the effective utilization of rice husk ash (RHA) in concrete. RHA is an agricultural byproduct characterized by silicon dioxide as its main component, with a content of 90% or more and a porous structure that absorbs water during mixing, thereby reducing fluidity. The quality of RHA varies depending on the calcination environment; however, the effect is not consistent.

View Article and Find Full Text PDF

Analysis of the Pyrolysis Kinetics, Reaction Mechanisms, and By-Products of Rice Husk and Rice Straw via TG-FTIR and Py-GC/MS.

Molecules

December 2024

Biochar Engineering & Technology Research Center of Liaoning Province, College of Agronomy, Shenyang Agricultural University, Shenyang 110866, China.

Article Synopsis
  • The study analyzed the pyrolysis behaviors of rice husk (RH) and rice straw (RS) using various scientific techniques, revealing distinct stages of pyrolysis for each organic material.
  • The activation energies for the different components (pseudo-hemicellulose, pseudo-cellulose, and pseudo-lignin) were calculated, showing varying levels of energy requirement between RH and RS.
  • RS demonstrated better pyrolysis performance and produced a greater variety of valuable by-products compared to RH, indicating potential for utilization in agriculture, bioenergy, and chemical sectors.
View Article and Find Full Text PDF

Cellulase was effectively immobilized onto an epoxy-bound chitosan-modified zinc metal-organic framework (epoxy/ZIF-8/CS/cellulase) support, yielding a conjugation rate of 0.64 ± 0.02 mg/cm2 and retaining 80.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!