Orthogonal phenoxazine-styryl BODIPY compact electron donor/acceptor dyads were prepared as heavy atom-free triplet photosensitizers (PSs) with strong red light absorption (ϵ=1.33×10 M cm at 630 nm), whereas the previously reported triplet photosensitizers based on the spin-orbit charge transfer intersystem crossing (SOCT-ISC) mechanism show absorption in a shorter wavelength range (<500 nm). More importantly, a long-lived triplet state (τ =333 μs) was observed for the new dyads. In comparison, the triplet state lifetime of the same chromophore accessed with the conventional heavy atom effect (HAE) is much shorter (τ =1.8 μs). Long triplet state lifetime is beneficial to enhance electron or energy transfer, the primary photophysical processes in the application of triplet PSs. Our approach is based on SOCT-ISC, without invoking of the HAE, which may shorten the triplet state lifetime. We used bisstyrylBodipy both as the electron acceptor and the visible light-harvesting chromophore, which shows red-light absorption. Femtosecond transient absorption spectra indicated the charge separation (109 ps) and SOCT-ISC (charge recombination, CR; 2.3 ns) for BDP-1. ISC efficiency of BDP-1 was determined as Φ =25 % (in toluene). The dyad BDP-3 was used as triplet PS for triplet-triplet annihilation upconversion (upconversion quantum yield Φ =1.5 %; anti-Stokes shift is 5900 cm ).
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7383670 | PMC |
http://dx.doi.org/10.1002/cphc.202000300 | DOI Listing |
J Am Chem Soc
January 2025
Department of Chemistry, University of California, Berkeley, California 97420, United States.
Altermagnets have been recently introduced as a classification of collinear, spin compensated magnetic materials that host net-zero magnetization yet display some electronic behaviors typically associated with noncompensated magnetic materials like ferromagnets. The emergence of such properties are a consequence of spin-split bands that arise under specific symmetry conditions in the limit of zero spin-orbit coupling. In this Perspective, we summarize the fundamental criteria for realizing an altermagnetic phase and present a qualitative electronic band structure derivation and symmetry analysis through chemical principles.
View Article and Find Full Text PDFJ Chem Phys
January 2025
Department of Chemistry and Paula M. Trienens Institute for Sustainability and Energy Northwestern University, Evanston, Illinois 60208-3113, USA.
Organic donor-acceptor (D-A) cocrystals are gaining attention for their potential applications in optoelectronic devices. This study explores the dynamics of charge transfer (CT) and triplet exciton formation in various D-A cocrystals. By examining a series of D-A cocrystals composed of coronene (COR), peri-xanthenoxanthene (PXX), and perylene (PER) donors paired with N,N-bis(3'-pentyl)perylene-3,4:9,10-bis(dicarboximide) (PDI), naphthalene-1,4:5,8-tetracarboxy-dianhydride (NDA), or pyrene-4,5,9,10-tetraone (PTO) acceptors, using transient absorption microscopy and time-resolved electron paramagnetic resonance spectroscopy, we find that the strength of the CT interaction influences the nature and yield of triplet excitons produced by CT state recombination.
View Article and Find Full Text PDFSmall
January 2025
Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, 781039, India.
Image-guided photodynamic therapy is acknowledged as one of the most demonstrative therapeutic modalities for cancer treatment because of its high precision, non-invasiveness, and improved imaging ability. A series of purely organic photosensitizers denoted as BTMCz, BTMPTZ, and BTMPXZ, have been designed and synthesized and are found to exhibit both thermally activated delayed fluorescence and aggregation-induced emission simultaneously. Experimental and theoretical studies are combined to reveal that modulation of the donor of the photosensitizer enables distinct thermally activated delayed fluorescence via a second-order spin-orbit perturbation mechanism involving lowest singlet charge-transfer and higher-lying triplet locally excited states, respectively.
View Article and Find Full Text PDFNanoscale
January 2025
Technical University of Darmstadt, Eduard-Zintl-Institute, Peter-Grünberg-Straße 8, 64287 Darmstadt, Germany.
The magnetic behavior of endohedrally transition-metal-doped tetrel clusters SnTM (TM = Cr, Mn, Fe) was investigated using a combined experimental and theoretical approach. Based on an improved experimental setup, the magnetic deflection was measured over a wide temperature range of = 16-240 K. From a Curie analysis of the experimentally observed single-sided shift at high nozzle temperatures, the spin multiplicities and -factors were determined.
View Article and Find Full Text PDFJ Comput Chem
January 2025
Universidade de São Paulo, Instituto de Química, Departamento de Química Fundamental, São Paulo, Brazil.
Seventeen electronic states of the dication VH were characterized by the SA-CASSCF/icMRCI methodology using very extended basis sets; 11 were described for the first time. Potential energy curves were constructed and the associated spectroscopic parameters evaluated. Triplet and quintet states correlating with the V + H channel are thermodynamic stable.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!