A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Zwitterionic small molecule based fluorophores for efficient and selective imaging of bacterial endospores. | LitMetric

In the emerging scenario of increasing antibiotic resistance and pathogen transmission channels, the grave danger posed by bacterial endospores in critical fields like food industry, health and medicine highlights the urgent need to develop efficient probes for their detection; their sturdy and impermeable multilayer coat makes desirable methods like fluorescence imaging extremely difficult. Selective imaging of the endospores in the presence of the bacteria is even more challenging. Furthermore, it is preferable to maintain the dormant state of endospores through the imaging process, if extended monitoring is required; many of the available techniques involve lethal germination or destruction of the endospores. We show that simple zwitterionic diaminodicyanoquinodimethane (DADQ) molecules with selected functionalities are efficient dyes for fluorescence imaging due to their dipolar structure that facilitates the penetration into the endospore system, and the enhanced fluorescence in their rigid/aggregated state. The facile structural tailorability allows DADQs with various appendage moieties to be synthesized; a derivative with ionic substituents (BT), and another with optimally long alkyl chains and the resultant hydrophobic character (BHADQ) are shown to be excellent fluorescent probes for endospores. Nanomolar amounts of dyes provide effective staining; while BT stains bacteria and endospores, most significantly, BHADQ stains endospores selectively. To the best of our knowledge, this is the first example of selective fluorescence imaging of endospores in their dormant state. A range of spectroscopy, microscopy and calorimetry studies provide insight into the molecular level interactions that enable efficient staining and bright images. DADQ fluorophores are photostable and non-cytotoxic, hence useful in practical applications. The versatile structural tailorability of these dye molecules holds great promise for targeted imaging.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d0tb00470gDOI Listing

Publication Analysis

Top Keywords

fluorescence imaging
12
endospores
9
selective imaging
8
bacterial endospores
8
imaging endospores
8
dormant state
8
structural tailorability
8
imaging
7
zwitterionic small
4
small molecule
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!