Marine microalgae within seawater and sea ice fuel high-latitude ecosystems and drive biogeochemical cycles through the fixation and export of carbon, uptake of nutrients, and production and release of oxygen and organic compounds. High-latitude marine environments are characterized by cold temperatures, dark winters and a strong seasonal cycle. Within this environment a number of diverse and dynamic habitats exist, particularly in association with the formation and melt of sea ice, with distinct microalgal communities that transition with the season. Algal physiology is a crucial component, both responding to the dynamic environment and in turn influencing its immediate physicochemical environment. As high-latitude oceans shift into new climate regimes the analysis of seasonal responses may provide insights into how microalgae will respond to long-term environmental change. This review discusses recent developments in our understanding of how the physiology of high-latitude marine microalgae is regulated over a polar seasonal cycle, with a focus on ice-associated (sympagic) algae. In particular, physiologies that impact larger scale processes will be explored, with an aim to improve our understanding of current and future ecosystems and biogeochemical cycles.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/nph.16648 | DOI Listing |
This case study of Kongsfjorden, western coastal Svalbard, provides insights on how freshwater runoff from marine- and land-terminating glaciers influences the biogeochemical cycles and distribution patterns of carbon, nutrients, and trace elements in an Arctic fjord system. We collected samples from the water column at stations along the fjord axis and proglacial river catchments, and analyzed concentrations of dissolved trace elements, together with dissolved nutrients, as well as alkalinity and dissolved inorganic carbon. Statistical tools were applied to identify and quantify biogeochemical processes within the fjord that govern the constituent distributions.
View Article and Find Full Text PDFEvol Appl
January 2025
National Oceanographic and Atmospheric Administration, National Marine Fisheries Service Alaska Fisheries Science Center, Auke Bay Laboratories Juneau Alaska USA.
High-latitude ocean basins are the most productive on earth, supporting high diversity and biomass of economically and socially important species. A long tradition of responsible fisheries management has sustained these species for generations, but modern threats from climate change, habitat loss, and new fishing technologies threaten their ecosystems and the human communities that depend on them. Among these species, Alaska's most charismatic megafaunal invertebrate, the red king crab, faces all three of these threats and has declined substantially in many parts of its distribution.
View Article and Find Full Text PDFFront Microbiol
December 2024
GEMA Center for Genomics, Ecology and Environment, Universidad Mayor, Santiago, Chile.
Surv Geophys
July 2023
Applied Physics Laboratory, University of Washington, Seattle, WA 98105 USA.
The global seasonal cycle of energy in Earth's climate system is quantified using observations and reanalyses. After removing long-term trends, net energy entering and exiting the climate system at the top of the atmosphere (TOA) should agree with the sum of energy entering and exiting the ocean, atmosphere, land, and ice over the course of an average year. Achieving such a balanced budget with observations has been challenging.
View Article and Find Full Text PDFMol Ecol
December 2024
Department of Integrative Biology, University of Texas at Austin, Austin, Texas, USA.
Coral populations across the Great Barrier Reef (GBR) could rapidly adapt to the warming climate if they have standing genetic variation for thermal tolerance. Here, we describe a locus likely involved in latitudinal adaptation of Acropora millepora. This locus shows a steep latitudinal gradient of derived allele frequency increasing at higher latitudes, and harbours a cluster of eight tandemly repeated Δ9-desaturase genes adjacent to a region in the genome where a hard selective sweep likely occurred.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!