Synthesis of glucosamine-6-phosphate (GlcN6P) by the enzyme GlmS initiates bacterial cell envelope biosynthesis. To ensure ongoing synthesis, GlcN6P homeostasis is required. achieves this through a post-transcriptional control mechanism comprising the RNA-binding protein RapZ and small RNAs (sRNAs) GlmY and GlmZ. GlmZ stimulates translation by base-pairing. When GlcN6P is abundant, GlmZ is cleaved and inactivated by endoribonuclease RNase E. Cleavage depends on RapZ, which binds GlmZ and recruits RNase E. Decreasing GlcN6P concentrations provoke up-regulation of the decoy sRNA GlmY which sequesters RapZ, thereby suppressing GlmZ decay. In our current study we identify RapZ as the GlcN6P sensor. GlcN6P-free RapZ interacts with and stimulates phosphorylation of the two-component system (TCS) QseE/QseF triggering expression. Thereby generated GlmY sequesters RapZ into stable complexes, allowing for expression. Sequestration by GlmY also disables RapZ to stimulate QseE/QseF, providing a negative feed-back loop limiting the response. When GlcN6P is replenished, GlmY is released from RapZ and rapidly degraded. Our work has revealed a complex regulatory scenario, in which an RNA binding protein senses a metabolite and communicates with two sRNAs, a TCS and ribonuclease RNase E to achieve metabolite homeostasis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7199280 | PMC |
http://dx.doi.org/10.15698/mic2020.05.717 | DOI Listing |
Sci Adv
January 2025
Simpson Querrey Institute for Epigenetics, Department of Biochemistry and Molecular Genetics Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.
The stability of RNA polymerase II (Pol II) is tightly regulated during transcriptional elongation for proper control of gene expression. Our recent studies revealed that promoter-proximal Pol II is destabilized via the ubiquitin E3 ligase cullin 3 (CUL3) upon loss of transcription elongation factor SPT5. Here, we investigate how CUL3 recognizes chromatin-bound Pol II as a substrate.
View Article and Find Full Text PDFCancer Res
January 2025
Tsinghua University, Beijing, China.
Pancreatic ductal adenocarcinoma (PDAC) is highly aggressive and lacks effective therapeutic options. Cancer cells frequently become more dependent on splicing factors than normal cells due to increased rates of transcription. Terminal uridylyltransferase 1 (TUT1) is a specific terminal uridylyltransferase for U6 small nuclear RNA (snRNA), which plays a catalytic role in the spliceosome.
View Article and Find Full Text PDFGenetics
January 2025
Department of Molecular Genetics, University of Toronto, 661 University Avenue, Toronto, Ontario, Canada M5G 1M1.
The Drosophila TRIM-NHL RNA-binding protein (RBP), MEI-P26, has previously been shown to suppress tumor formation in the germline. Here we show that, in the Drosophila larval central brain, cell-type specific expression of MEI-P26 plays a vital role in regulating neural development. MEI-P26 and another TRIM-NHL RBP, Brain tumor (BRAT), have distinct expression patterns in Type I neuroblast (NB) lineages: While both proteins are expressed in NBs, BRAT is expressed in ganglion mother cells (GMCs) but not neurons whereas MEI-P26 is expressed in neurons but not GMCs.
View Article and Find Full Text PDFCancer Rep (Hoboken)
January 2025
Department of Biology, College of Sciences, Shiraz University, Shiraz, Iran.
Background: The breakthrough discovery of novel biomarkers with prognostic and diagnostic value enables timely medical intervention for the survival of patients diagnosed with gastric cancer (GC). Typically, in studies focused on biomarker analysis, highly connected nodes (hubs) within the protein-protein interaction network (PPIN) are proposed as potential biomarkers. However, this study revealed an unexpected finding following the clustering of network nodes.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
Key Laboratory of Tropical Disease Control (Sun Yat-Sen University), Ministry of Education, Guangzhou, Guangdong, 510080, China.
Angiostrongylus cantonensis (AC) is the leading cause of eosinophilic meningoencephalitis worldwide. The neuroimmune interactions between peripheral and central immune systems in angiostrongyliasis remain unclear. In this study, significant infiltration of eosinophils, myeloid cells, macrophages, neutrophils, and Ly6C monocytes is observed in the brains of AC-infected mice, with macrophages being the most abundant.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!