Coronavirus 3C-like protease (3CL) is a highly conserved cysteine protease employing a catalytic dyad for its functions. 3CL is essential to the viral life cycle and, therefore, is an attractive target for developing antiviral agents. However, the detailed catalytic mechanism of coronavirus 3CL remains largely unknown. We took an integrated approach of employing X-ray crystallography, mutational studies, enzyme kinetics study, and inhibitors to gain insights into the mechanism. Such experimental work is supplemented by computational studies, including the prereaction state analysis, the ab initio calculation of the critical catalytic step, and the molecular dynamic simulation of the wild-type and mutant enzymes. Taken together, such studies allowed us to identify a residue pair (Glu-His) and a conserved His as critical for binding; a conserved GSCGS motif as important for the start of catalysis, a partial negative charge cluster (PNCC) formed by Arg-Tyr-Asp as essential for catalysis, and a conserved water molecule mediating the remote interaction between PNCC and catalytic dyad. The data collected and our insights into the detailed mechanism have allowed us to achieve a good understanding of the difference in catalytic efficiency between 3CL from SARS and MERS, conduct mutational studies to improve the catalytic activity by 8-fold, optimize existing inhibitors to improve the potency by 4-fold, and identify a potential allosteric site for inhibitor design. All such results reinforce each other to support the overall catalytic mechanism proposed herein.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acscatal.0c00110 | DOI Listing |
Top Curr Chem (Cham)
January 2025
School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, People's Republic of China.
BCP (bicyclo[1.1.1]pentane) is an ideal saturated carbon bioisostere, instead of the traditional benzene group, which has been extensively developed.
View Article and Find Full Text PDFJ Agric Food Chem
January 2025
College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225009, China.
Phytoene synthase (PSY) is one of key enzymes in carotenogenesis that catalyze two molecules of geranylgeranyl diphosphate to produce phytoene. PSY is widespread in bacteria, archaea, and eukaryotes. Currently, functional role and catalytic mechanism of archaeal PSY homologues have not been fully clarified due to the limited reports.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States.
Hydrogen spillover is an important process in catalytic hydrogenation reactions, facilitating H activation and modulating surface chemistry of reducible oxide catalysts. This study focuses on the unveiling of platinum-induced hydrogen spillover on monoclinic tungsten trioxide (γ-WO), employing ambient pressure X-ray photoelectron spectroscopy, density functional theory calculations and microkinetic modeling to investigate the dynamic evolution of surface states at varied temperatures. At room temperature, hydrogen spillover results in the formation of W and hydrogen intermediates (hydroxyl species and adsorbed water), facilitated by Pt metal clusters.
View Article and Find Full Text PDFChembiochem
January 2025
Jiangnan University, State Key Laboratory of Food Science and Technology, 1800 Lihu Road, Wuxi, China, 214122, Wuxi, CHINA.
Indigo is widely used in dyes, medicines and semiconductors materials due to its excellent dyeing efficiency, antibacterial, antiviral, anticancer, anti-corrosion, and thermostability properties. Here, a biosynthetic pathway for indigo was designed, integrating two enzymes (EcTnaA, MaFMO) into a higher L-tryptophan-producing the strain Escherichia coli TRP. However, the lower catalytic activity of MaFMO was a bottleneck for increasing indigo titers.
View Article and Find Full Text PDFNat Commun
January 2025
Department of Biochemistry and Structural Biology, UT Health San Antonio, San Antonio, TX, USA.
SAMHD1 is a dNTPase that impedes replication of HIV-1 in myeloid cells and resting T lymphocytes. Here we elucidate the substrate activation mechanism of SAMHD1, which involves dNTP binding at allosteric sites and transient tetramerization. Our findings reveal that tetramerization alone is insufficient to promote dNTP hydrolysis; instead, the activation mechanism requires an inactive tetrameric intermediate with partially occupied allosteric sites.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!