Plants use rigid cellulose together with non-cellulosic matrix polymers to build cell walls. Cellulose microfibrils comprise linear β(1,4)-glucan chains packed through inter- and intra-chain hydrogen-bonding networks and van der Waals forces. Due to its small size, the number of glucan chains and their arrangement in a microfibril remains elusive. Here we used atomic force microscopy (AFM) to directly image primary cell walls (PCWs) and secondary cell walls (SCWs) from fresh tissues of maize () under near-native conditions. By analyzing cellulose structure in different types of cell walls, we were able to measure the individual microfibrils in elongated PCWs at the sub-nanometer scale. The dimension of the microfibril was measured at 3.68 ± 0.13 nm in width and 2.25 ± 0.10 nm in height. By superimposing multiple AFM height profiles of these microfibrils, the overlay area representing the cross-section was estimated at 5.6 ± 0.4 nm, which fitted well to an 18-chain model packed as six sheets with 234432 conformation. Interestingly we found in PCW, all these individual microfibrils could be traced back to a bundle in larger imaging area, suggesting cellulose are synthesized as large bundles in PCWs, and then split during cell expansion or elongation. In SCWs where cell growth has ceased we observed nearly-parallel twined or individual microfibrils that appeared to be embedded separately in the matrix polymers without the splitting effect, indicating different mechanisms of cellulose biosynthesis in PCW and SCW. The sub-nanometer structure of the microfibril presented here was measured exclusively from elongated PCWs, further study is required to verify if it represents the inherent structure synthesized by the cellulose synthase complex in PCWs and SCWs.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7193091 | PMC |
http://dx.doi.org/10.3389/fpls.2020.00479 | DOI Listing |
Vaccines (Basel)
December 2024
Laboratory of Molecular Studies and Experimental Therapy-LEMTE, Department of Genetics, Federal University of Pernambuco, Recife 50670-901, Brazil.
Background/objectives: DNA vaccines are rapidly produced and adaptable to different pathogens, but they face considerable challenges regarding stability and delivery to the cellular target. Thus, effective delivery methods are essential for the success of these vaccines. Here, we evaluated the efficacy of capsules derived from the cell wall of the yeast as a delivery system for DNA vaccines.
View Article and Find Full Text PDFVaccines (Basel)
December 2024
Department of Chemistry and Biochemistry and School of Green Chemistry and Engineering, University of Toledo, 2801 West Bancroft Street, Toledo, OH 43606, USA.
Background/objectives: The MHCII-dependent, CD4+ T-cell zwitterionic polysaccharide PS A1 has been investigated as a promising carrier for vaccine development because it can induce an MHCII-dependent CD4+ response towards a variety of tumor-associated carbohydrate antigens (TACAs). However, PS A1 cannot elicit cytotoxic T lymphocytes through MHCI, which may or may not hamper its potential clinical use in cancer, infectious and viral vaccine development. This paper addresses PS A1 MHCI independence through the introduction of an MHCI epitope, the poliovirus (PV) peptide, to establish an MHCI- and MHCII-dependent vaccine.
View Article and Find Full Text PDFPolymers (Basel)
December 2024
National Research Council-National Institute of Optics, Largo E. Fermi, 6, 50125 Florence, Italy.
Understanding the deterioration processes in wooden artefacts is essential for accurately assessing their conservation status and developing effective preservation strategies. Advanced imaging techniques are currently being explored to study the impact of chemical changes on the structural and mechanical properties of wood. Nonlinear optical modalities, including second harmonic generation (SHG) and two-photon excited fluorescence (TPEF), combined with fluorescence lifetime imaging microscopy (FLIM), offer a promising non-destructive diagnostic method for evaluating lignocellulose-based materials.
View Article and Find Full Text PDFPlants (Basel)
December 2024
College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China.
Plant height represents a pivotal agronomic trait for the genetic enhancement of crops. The plant cell wall, being a dynamic entity, is crucial in determining plant stature; however, the regulatory mechanisms underlying cell wall remodeling remain inadequately elucidated. This study demonstrates that the application of gibberellin 3 (GA3) enhances both plant height and cell wall remodeling in tomato () plants.
View Article and Find Full Text PDFPlants (Basel)
December 2024
Shandong Laboratory of Advanced Agricultural Sciences at Weifang, Peking University Institute of Advanced Agricultural Sciences, Weifang 261000, China.
The acquisition and utilization of cell walls have fundamentally shaped the plant lifestyle. While the walls provide mechanical strength and enable plants to grow and occupy a three-dimensional space, successful sessile life also requires the walls to undergo dynamic modifications to accommodate size and shape changes accurately. Plant cell walls exhibit substantial mechanical heterogeneity due to the diverse polysaccharide composition and different development stages.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!