Membrane Contact Sites and Organelles Interaction in Plant Autophagy.

Front Plant Sci

School of Life Sciences, Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, China.

Published: April 2020

Autophagy is an intracellular trafficking and degradation system for recycling of damaged organelles, mis-folded proteins and cytoplasmic constituents. Autophagy can be divided into non-selective autophagy and selective autophagy according to the cargo specification. Key to the process is the timely formation of the autophagosome, a double-membrane structure which is responsible for the delivery of damaged organelles and proteins to lysosomes or vacuoles for their turnover. Autophagosomes are formed by the closure of cup-shaped phagophore which depends on the proper communication with membrane contributors. The endoplasmic reticulum (ER) is a major membrane source for autophagosome biogenesis whereby the ER connects with phagophore through membrane contact sites (MCSs). MCSs are closely apposed domains between organelle membranes where lipids and signals are exchanged. Lipid transfer proteins (LTPs) are a large family of proteins including Oxysterol-binding protein related proteins (ORP) which can be found at MCSs and mediate lipid transfer in mammals and yeast. In addition, interaction between autophagosomes and other organelles can also be detected in selective autophagy for selection and degradation of various damaged organelles. Selective autophagy is mediated by the binding of a receptor or an adaptor between a cargo and an autophagosome. Here we summarize what we know about the MCS between autophagosomes and other organelles in eukaryotes. We then discuss progress in our understanding about ORPs at MCSs in plants and the underlying mechanisms of selective autophagy in plants with a focus on receptors/adaptors that are involved in the interaction of the autophagosome with other cytoplasmic constituents, including the Neighbor of BRCA1 gene 1 (NBR1), ATG8-interacting protein 1 (ATI1), Regulatory Particle Non-ATPase 10 (RPN10), and Dominant Suppressor of KAR2 (DSK2).

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7193052PMC
http://dx.doi.org/10.3389/fpls.2020.00477DOI Listing

Publication Analysis

Top Keywords

selective autophagy
16
damaged organelles
12
membrane contact
8
contact sites
8
autophagy
8
cytoplasmic constituents
8
lipid transfer
8
autophagosomes organelles
8
organelles
6
proteins
5

Similar Publications

Identification of Programmed Cell Death-related Biomarkers for the Potential Diagnosis and Treatment of Osteoporosis.

Endocr Metab Immune Disord Drug Targets

January 2025

Department of Orthopaedic Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China.

Background: Osteoporosis (OP) is a skeletal condition characterized by increased susceptibility to fractures. Programmed cell death (PCD) is the orderly process of cells ending their own life that has not been thoroughly explored in relation to OP.

Objective: This study is to investigate PCD-related genes in OP, shedding light on potential mechanisms underlying the disease.

View Article and Find Full Text PDF

Deacetylated SNAP47 recruits HOPS to facilitate autophagosome-lysosome fusion independent of STX17.

Nat Commun

January 2025

School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Disease, Huazhong University of Science and Technology, Wuhan, Hubei, China.

Autophagy, a conserved catabolic process implicated in a diverse array of human diseases, requires efficient fusion between autophagosomes and lysosomes to function effectively. Recently, SNAP47 has been identified as a key component of the dual-purpose SNARE complex mediating autophagosome-lysosome fusion in both bulk and selective autophagy. However, the spatiotemporal regulatory mechanisms of this SNARE complex remain unknown.

View Article and Find Full Text PDF

Construction and biological function of gene knockout strain.

Zhong Nan Da Xue Xue Bao Yi Xue Ban

August 2024

Department of Parasitology, School of Basic Medical Sciences, Central South University, Changsha 410013.

Objectives: Toxoplasmosis is a zoonotic parasitic disease caused by (), which can lead to complications such as encephalitis and ocular toxoplasmosis. The disease becomes more severe when the host's immune system is compromised. Rhoptry proteins are major virulence factors that enable to invade host cells.

View Article and Find Full Text PDF

Close cooperation between Semi1 and Semi2 proteins is essential for pronuclear positioning in .

Mol Biol Cell

January 2025

Department of Biosciences, College of Humanities and Sciences, Nihon University, Tokyo 156-8550, Japan.

During sexual reproduction in the ciliate , meiosis occurs in the germline micronucleus, resulting in the formation of four haploid micronuclei. Of these, only one is selected to evade autophagy, and subsequently migrates to the membrane junction with the partner cell for reciprocal pronuclear exchange. We previously demonstrated that the transmembrane protein Semi1 is essential for this nuclear migration.

View Article and Find Full Text PDF

Background: Staphylococcus aureus, a known contributor to non-healing wounds, releases vesicles (SAVs) that influence the delicate balance of host-pathogen interactions. Efferocytosis, a process by which macrophages clear apoptotic cells, plays a key role in successful wound healing. However, the precise impact of SAVs on wound repair and efferocytosis remains unknown.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!