Tree roots attract their associated microbial partners from the local soil community. Accordingly, tree root-associated microbial communities are shaped by both the host tree and local environmental variables. To rationally compare the magnitude of environmental conditions and host tree impact, the "PhytOakmeter" project planted clonal oak saplings ( L., clone DF159) as phytometers into different field sites that are within a close geographic space across the Central German lowland region. The PhytOakmeters were produced via micro-propagation to maintain their genetic identity. The current study analyzed the microbial communities in the PhytOakmeter root zone vs. the tree root-free zone of soil two years after out-planting the trees. Soil DNA was extracted, 16S and ITS2 genes were respectively amplified for bacteria and fungi, and sequenced using Illumina MiSeq technology. The obtained microbial communities were analyzed in relation to soil chemistry and weather data as environmental conditions, and the host tree growth. Although microbial diversity in soils of the tree root zone was similar among the field sites, the community structure was site-specific. Likewise, within respective sites, the microbial diversity between PhytOakmeter root and root-free zones was comparable. The number of microbial species exclusive to either zone, however, was higher in the host tree root zone than in the tree root-free zone. PhytOakmeter "core" and "site-specific" microbiomes were identified and attributed to the host tree selection effect and/or to the ambient conditions of the sites, respectively. The identified PhytOakmeter root zone-associated microbiome predominantly included ectomycorrhizal fungi, yeasts and saprotrophs. Soil pH, soil organic matter, and soil temperature were significantly correlated with the microbial diversity and/or community structure. Although the host tree contributed to shape the soil microbial communities, its effect was surpassed by the impact of environmental factors. The current study helps to understand site-specific microbe recruitment processes by young host trees.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7190799PMC
http://dx.doi.org/10.3389/fmicb.2020.00749DOI Listing

Publication Analysis

Top Keywords

host tree
28
root zone
16
microbial communities
16
tree
13
tree root
12
environmental conditions
12
conditions host
12
phytoakmeter root
12
microbial diversity
12
microbial
9

Similar Publications

The prebiotic landscape: history, health and physiological benefits, and regulatory challenges - an IPA perspective part 1.

Benef Microbes

January 2025

Beneficial MicrobesConsultancy, Johan Karschstraat 3, 6709 TN Wageningen, The Netherlands.

Prebiotics are becoming increasingly recognized by consumers, health care professionals and regulators as important contributors to health. Nonetheless, the development, progress, and adoption of prebiotics is hindered by loose terminology, various misconceptions about sources and types of compounds that may be classified as prebiotics, and the lack of consensus on a definition that satisfies regulators. Evolving knowledge of the microbiome and its effects on host health has generated opportunities for modulation of the microbiota that can support host health.

View Article and Find Full Text PDF

Towards repeated clear-cutting of boreal forests - a tipping point for biodiversity?

Biol Rev Camb Philos Soc

January 2025

Section for Genetics and Evolutionary Biology, Department of Biosciences, University of Oslo, P.O. Box 1066 Blindern, Oslo, 0316, Norway.

Boreal forests are important carbon sinks and host a diverse array of species that provide important ecosystem functions. Boreal forests have a long history of intensive forestry, in which even-aged management with clear-cutting has been the dominant harvesting practice for the past 50-80 years. As a second cycle of clear-cutting is emerging, there is an urgent need to examine the effects of repeated clear-cutting events on biodiversity.

View Article and Find Full Text PDF

How does the fig tree Ficus benguetensis protect its investment in the production of figs and pollinating fig wasps against parasitism from non-pollinating fig wasps? This study documents a previously overlooked defense mechanism: fig abscission-the natural shedding of the fig fruit as a defense mechanism. Our bagging experiments showed that both the absence of pollination and high parasitism levels lead to the abortion of F. benguetensis figs, with positive correlations between parasitism levels, increased abscission rates, and decreased pollinator production.

View Article and Find Full Text PDF

PET-CT-based host metabolic (PETMet) features are associated with pathologic response in gastroesophageal adenocarcinoma.

Eur J Surg Oncol

January 2025

Division of Surgical Oncology, Department of Surgery, Northwell Health, New Hyde Park, NY, USA; Gastric and Mixed Tumor Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA. Electronic address:

Background: F-FDG PET-CT-based host metabolic (PETMet) profiling of non-tumor tissue is a novel approach to incorporate the patient-specific response to cancer into clinical algorithms.

Materials And Methods: A prospectively maintained institutional database of gastroesophageal cancer patients was queried for pretreatment PET-CTs, demographics, and clinicopathologic variables. F-FDG PET avidity was measured in 9 non-tumor tissue types (liver, spleen, 4 muscles, 3 fat locations).

View Article and Find Full Text PDF

In North America, raccoon rabies virus (RRV) is a public health concern due to its potential for rapid spread, maintenance in wildlife, and impact on human and domesticated animal health. RRV is an endemic zoonotic pathogen throughout the eastern USA. In 1991, an outbreak of RRV in Fairfield County, Connecticut, spread through the state and eventually throughout the Northeast and into Canada.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!