The purpose of this study was to compare physical demands between game quarters and specific playing positions during official basketball competition. Thirteen professional male basketball players from the Spanish 2 Division were monitored across all 17 regular-season home games. Physical demands were analyzed using a local positioning system (WIMU PRO™, Realtrack Systems S.L., Almería, Spain) and included peak velocity, total distance covered, high-speed running (>18 km·h), player load, jumps (>3G), impacts (>8G) and high-intensity accelerations (≥2 m·s) and decelerations (≤-2 m·s). A linear mixed model was used to test statistical significance (p < 0.05) between independent variables. Furthermore, standardized Cohen's effect size (ES) and respective 90% confidence intervals were also calculated. There was an overall decrease in all variables between the first and fourth quarter during competition. Specifically, total distance covered (p < 0.001; ES = -1.31) and player load (p < 0.001; ES = -1.27) showed large effects between the first and last period. Regarding differences between positions, guards presented significant increased values compared to centers (p = 0.04; ES = 0.51), whereas centers achieved significant larger results and moderate effects in comparison to guards in peak velocity (p = 0.01; ES = 0.88) and jumps (p = 0.04; ES = 0.86). In conclusion, physical demands vary between game quarters and playing positions during official competition and these differences should be considered when designing training drills to optimize game performance.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7196749PMC

Publication Analysis

Top Keywords

physical demands
16
game quarters
12
playing positions
12
demands game
8
quarters playing
8
basketball players
8
official competition
8
positions official
8
peak velocity
8
total distance
8

Similar Publications

Background: Low back pain (LBP) is highly prevalent and disabling, especially in agriculture sectors. However, there is a gap in LBP prevention and intervention studies in these physically demanding occupations, and to date, no studies have focused on horticulture workers. Given the challenges of implementing interventions for those working in small businesses, self-management offers an attractive and feasible option to address work-related risk factors and manage LBP.

View Article and Find Full Text PDF

Riboli, A, Nardi, F, Osti, M, Cefis, M, Tesoro, G, and Mazzoni, S. Training load, official match locomotor demand, and their association in top-class soccer players during a full competitive season. J Strength Cond Res 39(2): 249-259, 2025-To examine training load and official match locomotor demands of top-class soccer players during a full competitive season and to evaluate their association.

View Article and Find Full Text PDF

The aim of this study is to present a case of laparoscopic treatment of perineal hernia in a patient after abdominoperineal resection od the rectum. We present the case of a 63-year-old woman who was operated on laparoscopically with a mesh sewn in at the level of the sacrum, iliac vessels and pubic symphysis. And covered with a peritoneal flap above the urinary bladder.

View Article and Find Full Text PDF

Developing damping materials that are both optically transparent and mechanically robust, while offering broad frequency damping capacity, is a significant challenge─particularly for devices that require protection without compromising visual clarity. Conventional methods often either fail to maintain transparency or involve complex designs that are difficult to implement. Here, we present an ionogel system that integrates a physically cross-linked elastic copolymer network with a viscous ionic liquid.

View Article and Find Full Text PDF

Peptide-Perovskite Based Bio-Inspired Materials for Optoelectronics Applications.

Adv Sci (Weinh)

January 2025

BCMaterials, Basque Center for Materials, Applications, and Nanostructures, UPV/EHU Science Park, Leioa, 48940, Spain.

The growing demand for environmentally friendly semiconductors that can be tailored and developed easily is compelling researchers and technologists to design inherently bio-compatible, self-assembling nanostructures with tunable semiconducting characteristics. Peptide-based bioinspired materials exhibit a variety of supramolecular morphologies and have the potential to function as organic semiconductors. Such biologically or naturally derived peptides with intrinsic semiconducting characteristics create new opportunities for sustainable biomolecule-based optoelectronics devices.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!