The major purpose of the presented study is to analyze and find the solution for the model of nonlinear fractional differential equations (FDEs) describing the deadly and most parlous virus so-called coronavirus (COVID-19). The mathematical model depending of fourteen nonlinear FDEs is presented and the corresponding numerical results are studied by applying the fractional Adams Bashforth (AB) method. Moreover, a recently introduced fractional nonlocal operator known as Atangana-Baleanu (AB) is applied in order to realize more effectively. For the current results, the fixed point theorems of Krasnoselskii and Banach are hired to present the existence, uniqueness as well as stability of the model. For numerical simulations, the behavior of the approximate solution is presented in terms of graphs through various fractional orders. Finally, a brief discussion on conclusion about the simulation is given to describe how the transmission dynamics of infection take place in society.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7205740PMC
http://dx.doi.org/10.1016/j.chaos.2020.109867DOI Listing

Publication Analysis

Top Keywords

coronavirus covid-19
8
comprehensive model
4
model novel
4
novel coronavirus
4
covid-19 mittag-leffler
4
mittag-leffler derivative
4
derivative major
4
major purpose
4
purpose presented
4
presented study
4

Similar Publications

The coronavirus disease 2019 (COVID-19) is a fatal disease caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). To date, several vaccines have been developed to combat the spread of this virus. Mucosal vaccines using food-grade bacteria, such as Lactobacillus spp.

View Article and Find Full Text PDF

The attitudes of reproductive-age individuals toward COVID-19 vaccination during pregnancy are still not well understood. We aimed to explore the attitudes toward COVID-19 vaccines during pregnancy and the determinants among the Chinese reproductive-age population. An anonymous cross-sectional study was conducted in China from July 4 to August 11, 2023.

View Article and Find Full Text PDF

The recent coronavirus disease (COVID-19) forced pre-university professionals to modify the educational system. This work aimed to determine the effects of pandemic situation on students' access to medical studies by comparing the performance of medical students. We evaluated the performance of students enrolled in a subject taught in the first semester of the medical curriculum in two pre-pandemic academic years (PRE), two post-pandemic years (POST), and an intermediate year (INT) using the results of a final multiple-choice exam.

View Article and Find Full Text PDF

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is closely related to SARS-CoV and uses angiotensin-converting enzyme 2 as its cellular receptor. In early 2020, reports emerged linking CoV disease 2019 (COVID-19) to olfactory and gustatory disturbances. These disturbances could be attributed to virus-induced damage to olfactory neurons or immune responses, thereby affecting sensory functions.

View Article and Find Full Text PDF

Accuracy of Rhythm Diagnostic Systems' MultiSense in Detection of Arterial Oxygen Saturation and Respiratory Rate During Hypoxia in Humans: Effects of Skin Color and Device Localization.

Sensors (Basel)

December 2024

Biomedicine Research Center of Strasbourg (CRBS), UR 3072, "Mitochondria, Oxidative Stress and Muscle Plasticity", Faculty of Medicine, University of Strasbourg, 67000 Strasbourg, France.

The continuous monitoring of oxygen saturation (SpO) and respiratory rates (RRs) are major clinical issues in many cardio-respiratory diseases and have been of tremendous importance during the COVID-19 pandemic. The early detection of hypoxemia was crucial since it precedes significant complications, and SpO follow-up allowed early hospital discharge in patients needing oxygen therapy. Nevertheless, fingertip devices showed some practical limitations.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!