A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Hydrogen Terminated Germanene for a Robust Self-Powered Flexible Photoelectrochemical Photodetector. | LitMetric

Hydrogen Terminated Germanene for a Robust Self-Powered Flexible Photoelectrochemical Photodetector.

Small

Institute for Superconducting and Electronic Materials (ISEM), Australian Institute for Innovative Materials (AIIM), University of Wollongong, Wollongong, NSW, 2500, Australia.

Published: June 2020

As a rising star in the family of graphene analogues, germanene shows great potential for electronic and optical device applications due to its unique structure and electronic properties. It is revealed that the hydrogen terminated germanene not only maintains a high carrier mobility similar to that of germanene, but also exhibits strong light-matter interaction with a direct band gap, exhibiting great potential for photoelectronics. In this work, few-layer germanane (GeH) nanosheets with controllable thickness are successfully synthesized by a solution-based exfoliation-centrifugation route. Instead of complicated microfabrication techniques, a robust photoelectrochemical (PEC)-type photodetector, which can be extended to flexible device, is developed by simply using the GeH nanosheet film as an active electrode. The device exhibits an outstanding photocurrent density of 2.9 µA cm with zero bias potential, excellent responsivity at around 22 µA W under illumination with intensity ranging from 60 to 140 mW cm , as well as short response time (with rise and decay times, t = 0.24 s and t = 0.74 s). This efficient strategy for a constructing GeH-based PEC-type photodetector suggests a path to promising high-performance, self-powered, flexible photodetectors, and it also paves the way to a practical application of germanene.

Download full-text PDF

Source
http://dx.doi.org/10.1002/smll.202000283DOI Listing

Publication Analysis

Top Keywords

hydrogen terminated
8
terminated germanene
8
self-powered flexible
8
great potential
8
pec-type photodetector
8
germanene
5
germanene robust
4
robust self-powered
4
flexible photoelectrochemical
4
photoelectrochemical photodetector
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!