Background: Glaucoma, a characteristic type of optic nerve degeneration in the posterior pole of the eye, is a common cause of irreversible vision loss and the second leading cause of blindness worldwide. As an optic neuropathy, glaucoma is identified by increasing degeneration of retinal ganglion cells (RGCs), with consequential vision loss. Current treatments only postpone the development of retinal degeneration, and there are as yet no treatments available for this disability. Recent studies have shown that replacing lost or damaged RGCs with healthy RGCs or RGC precursors, supported by appropriately designed bio-material scaffolds, could facilitate the development and enhancement of connections to ganglion cells and optic nerve axons. The consequence may be an improved retinal regeneration. This technique could also offer the possibility for retinal regeneration in treating other forms of optic nerve ailments through RGC replacement.
Methods: In this brief review, we describe the innovations and recent developments in retinal regenerative medicine such as retinal organoids and gene therapy which are specific to glaucoma treatment and focus on the selection of appropriate bio-engineering principles, biomaterials and cell therapies that are presently employed in this growing research area.
Results: Identification of optimal sources of cells, improving cell survival, functional integration upon transplantation, and developing techniques to deliver cells into the retinal space without provoking immune responses are the main challenges in retinal cell replacement therapies.
Conclusion: The restoration of visual function in glaucoma patients by the RGC replacement therapies requires appropriate protocols and biotechnology methods. Tissue-engineered scaffolds, the generation of retinal organoids, and gene therapy may help to overcome some of the challenges in the generation of clinically safe RGCs.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7260329 | PMC |
http://dx.doi.org/10.1007/s13770-020-00254-8 | DOI Listing |
BMJ Open
January 2025
Bristol Eye Hospital, University Hospitals Bristol & Weston NHS Foundation Trust, Bristol, UK.
Introduction: Papilloedema can be the first sign of life-threatening disease, for example, brain tumours. Due to the potential seriousness of this clinical sign, the detection of papilloedema would normally prompt urgent hospital referral for further investigation. The problem is that many benign structural variations of optic nerve anatomy can be mistaken for papilloedema, so-called pseudopapilloedema.
View Article and Find Full Text PDFAm J Ophthalmol
January 2025
Hacettepe University School of Medicine, Department of Ophthalmology, Ankara, Turkey.
Objective: To evaluate the effects of Fanconi anemia (FA) on retinal and choroidal microvasculature using Optical Coherence Tomography (OCT) and Optical Coherence Tomography Angiography (OCTA).
Design: Cohort study with age-matched controls.
Subjects And Participants: This study included 11 eyes from 11 patients diagnosed with FA and 12 eyes from 12 age-matched healthy controls.
Am J Hum Genet
January 2025
Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA; Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA. Electronic address:
While many eye disorders are linked through defects in vascularization and optic nerve degeneration, genetic correlation studies have yielded variable results despite shared features. For example, glaucoma and myopia both share optic neuropathy as a feature, but genetic correlation studies demonstrated minimal overlap. By leveraging electronic health record (EHR) resources that contain genetic variables such as genetically predicted gene expression (GPGE), researchers have the potential to improve the identification of shared genetic drivers of disease by incorporating knowledge of shared features to identify disease-causing mechanisms.
View Article and Find Full Text PDFJ Neuroophthalmol
January 2025
Department of Ophthalmology (JGJ-C, TE, Y-HC, LRD, RAG), Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts; Frank H. Netter Medical School (JGJ-C), North Haven, Connecticut; and Department of Anesthesiology (DZ), Critical Care and Pain Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts.
Background: Patients with craniosynostosis are at high risk of developing elevated intracranial pressure (ICP) causing papilledema and secondary optic atrophy. Diagnosing and monitoring optic neuropathy is challenging because of multiple causes of vision loss including exposure keratopathy, amblyopia, and cognitive delays that limit examination. Peripapillary hyperreflective ovoid mass-like structures (PHOMS) are an optical coherence tomography (OCT) finding reported in association with papilledema and optic neuropathy.
View Article and Find Full Text PDFSurg Radiol Anat
January 2025
Department of Ophthalmology & Visual Sciences, University of Adelaide, North Terrace, Adelaide, SA, 5000, Australia.
Purpose: To report the normative dimensions of the frontal nerve (FN) on fat-suppressed suppressed gadolinium (fs-gad) enhanced magnetic resonance imaging (MRI).
Method: A retrospective cohort study of patients who underwent coronal fs-gad T1-weighted MRI. Orbits were excluded if there was unilateral or bilateral pathology of the FN or optic nerve sheath (ONS), incomplete MRI sequences, poor image quality or indiscernible FN on radiological assessment.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!